IR

l Qrg

y 4

? .
i
i

-
\

A6

Prime Computer, Inc.

D0OC4302-190P
CPL User’s Guide

Revision 19.0

CPL Users Guide

DOC4302-190

Revision 19

by
Alice Landy

This quide documents the software operation of the Prime Computer and
its supporting systems and utilities as implemented at Master Disk
Revision Level 19 (Rev. 19).

Prime Computer, Inc.

500 Old Connecticut Path
Framingham, Massachusetts 01701

COPYRIGHT INFORMATION

The information in this document is subject to change without notice
and should not be construed as a commitment by Prime Computer
Corporation, Prime Computer Corporation assumes no responsibility for
any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Copyright © 1982 by
Prime Computer, Incorporated
500 01d Connecticut Path
Framingham, Massachusetts 01701
PRIME and PRIMDS are registered trademarks of Prime Computer, Inc.

PRIMENET, RINGNET, PRIME INFORMATION, and THE PROGRAMMER'S COMPANION
are trademarks of Prime Computer, Inc.

FOW TO ORDER TECHNICAL DOCUMENTS

U.S. Customers Prime Employees
Software Distribution Communications Services
Prime Computer, Inc. MS 15-13, Prime Park
1 New York Ave. Natick, MA 01760
Framingham, MA 01701 (617) 655-8000, X4837
(617) 879-2960 X2053, 2054

Customers Outside U.S. PRIME INFORMATION
Contact your local Prime Contact your PRIME
subsidiary or distributor. INFORMATION dealer.

ii

PRINTING HISTORY — CPL User's Guide

Edition Date Number Documents Rev,
First Edition January, 1981 IDR4302 18.1
Second Edition July, 1982 DOC4302-190 19.0

Changes made to the text since the last printing have been
indicated with change bars in the margin. Change bars with
numbers indicate technical changes. Those without numbers
indicate rewrites for clarification or additional information.

SUGGESTION BOX

All correspondence on suggested changes to this document should be
directed to:

Alice Landy

Technical Publications Department
Prime Computer, Inc.

500 0ld Connecticut Path
Framingham, Massachusetts 01701

iii

Contents

ABQUT THIS BOOK ix

PART I - THE BASIC SUBSET

1 INTRODUCTION

What Is CPL? 1-1
How Might You Use CPL? 1-1
Naming CPL Programs 1-2
Running CPL Programs 1-2

Variables, Functions, and
Directives in CPL Programs 1
How Does CPL Work? 1-3
CPL Features 1l
Who Wants Which Features? 1

2 THE BASICS OF CPL

PRIMOS Commands in CPL Programs 2
Using Variables in CPL Programs 2
Decision-Making in CPL Programs 2-
Other Conditional Actions 2
Using CPL with Subsystems:

&DATA Groups 2-1
When Errors Occur 2-2
How CPL Programs End:

The &RETURM Directive 2-2
When One CPL Program Runs Another 2-2

3 CPL FORMAT

CPL Format Rules 3-1

PART II - THE INTERMEDIATE SUBSET

4 VARIABLES IN CPL

Introduction 4-1
The &SET VAR Directive 4-1
Integer Values for Variables 4-3
Logical Values for Variables 4-4

Local and Global Variables 4-5
PRIMDS Commands 4-7

5 TERMINAL INPUT AND QUTPUT IN CPL
Overview

5_
Terminal Input 5-
Terminal Output 5-

o N

6 ARGUMENTS WITH TYPE-CHECKING AND DEFAULT VALUES

Introduction 6-1
Type Checking and Default

Specification 6—-2
Using REST Arguments 6—6

7 PROCESSING GRAUPS OF FILES

Grouping Files and Directories 7
Filename Conventions 7
Using Suffixes: The BEFORE and

AFTER Functions -
Wildcards 7
The WILD Function 7
Using the WILD Function in Loops 7

8 DECISION-MAKING IN CPL PROGRAMS
Control Directives 8-1
Single &IF Statements 8-1
Nested &IF Statements 8-3
The &SELRCT Directive 8-6

9 LOOPS IN CPL

Using Loops

Overview

Countecé Loops

&DO0 &WHILE Loops

&DO &UNTIL Loops

Loops that Combine Counting, &WHILE,
and &UNTIL Tests

SREPEAT Loops

&DO &LIST Loops

&DO &ITEMS Loops

kOkOkf)kOkO
=0~

[ew)

wowe
b e
rEEE

10 DEBUGGING AND ERROR HANDLING IN CPL

Encountering Errors 10-1
Debugging CPL Programs 10-1
&NO EXEQUTE/&EXECUTE 10-2
&ECHO/&NO ECHO 10-4
SWATCH/&NO WATCH 10-5
Error Handling 10-6

vi

PART III - FULL CPL

11 EXPRESSION EVALUATION IN CPL

Introduction 11-1
Variables 11-2
Functiorns 11-3
Quoted Strings 11-4
Using Abbreviations 11-7
Evaluation of Expressions 11-7

12 COMMAND FUNCTIONS

The CALC Function 12-1
Other Arithmetic Functions 12-3
String Functions 12-4
File System Functions 12-7
Miscellaneous Functions 12-11

13 ARGUMENTS

Introduction 13-1
The &ARGS Directive 13-1
Object Arguments 13-2
Specifying Types 13-3
How Mull Strings are Handled 13-3
Argument Defaults 13-5
Option Arguments 13-6
REST and UNCL Data Types 13-8

14 WRITING SUBROUTINES AND FUNCTIONS IN CPL

Introduction 14-1
Writing Routines 14-2
Writing Functions in CPL 14-8

15 ERROR AND CONDITION HANDLING IN CPL

Introduction 15-1
Error Handling 15-1
Passing Severity Codes 15-4
Condition: Handling 15-6

vii

APPENDIXES
SYNTAX SUMMARY A-1
CPL ERROR MESSAGES

Introduction B-1
Error Messages B-2

RUNNING CPL PROGRAMS AS BATCH JCOBS AND PHANTOMS
Running CPL Programs as Batch Jobs C-1
Job Displays for CPL Jobs Cc-2
Running CPL Programs as Phantoms Cc-3

COMINPUT AND CPL COMPARED

Comparisons D-1
Sample Files D-5
A Final Note -5

GLOBAL VARIABLE ROUTINES

Introduction E-1
GVSSET E-1
GVSGET E-2
Data-Type Conversions for

FORTRAN and COBCL E-2

INDEX X-1

viii

About
This Book

The CPL User's Guide provides both a tutorial and a reference guide for
Prime's Command Procedure Language (CPL).

This book is divided into three parts.

e Part I introduces CPL and teaches the basics of CPL programming.
We advise all readers who are new to CPL to read through these
chapters in order.

Some readers will find their needs satisfied by the features
provided by this basic subset of CPL. They will not need to
read further,

e Part II presents an intermediate subset of CPL. Mastering this
subset adds considerably to the power of the CPL programs you
can write, while not introducing any great oomplexity. Many
users, particularly applications programmers, will want to work
with this subset.

® Part III presents the additional features which make up full
CPL. JTn addition, it contains a fuller explanation of how CPL
evaluates expressions, and a reference section on CPL's command
functions. Although any user might want to refer to some part
of this material, Part III as a whole will probably be of most
use to systems programmers.

We assume that the readers of this book are programmers who are already
sorpewhat familiar with Prime's operating system, PRIMDS, and its
editor, ED. If you're not familiar with PRIMDS, you should read:

e The Prime User's Guide, Chapters 1-7

® The New User's Guide to EDITOR and RUNOFF, Chapter 3

ix

Some familiarity with structured programming concepts (such as DO loops
and IF...THEN...ELSE constructs) is also helpful. If you haven't done
structured programming before, you may want to refer to one of the many
structured programming texts on the market. Two useful ones are:

e Conway and Gries, An Introduction to Programming: A Structured
Approach, Winthrop, Cambridge, MA, 1973

e Xenakis, Structured PL/I Programming, Duxbury Press, 1979

PRIME DOCUMENTATION CONVENTIONS

The following conventions are used in ocommand formats, statement
formats, and in examples throughout this document. Examples illustrate
the uses of these commands and statements in typical applications.
Terminal input may be entered in either uppercase or lowercase.

Explanation

In command formats, words
in uppercase indicate the
actual names of commands,
statements, and keywords.
They can be entered

in either uppercase

or lowercase.

Convention

Example

UPPERCASE SLIST

lowercase In command formats, words LOGIN user—id
in lowercase indicate items
for which the user must
substitute a suitable value.
If a command or statement LOGQUT

has an abbreviation, it is

indicated by underlining,

In cases where the command

or directive itself &SET VAR
contains an underscore, the &S
abbreviation is shown below

the full name, and the

name and abbreviation are

placed within braces.

abbreviations

underlining
in
examples

In examples, user input
is underlined but system
prompts and output are not.

OK, RESUME MY PROG
This is the output
of MY_PROG.CPL

OK,

Large brackets

Large braces

Fllipsis

Parentheses

()

Hyphen

Large brackets enclose
a list of two or more
optional items. Choose
none, one, Or more

of these items.

Large braces enclose a
list of items. Choose
one and only one of
these items.

An ellipsis indicates that
the preceding item may be
repeated.

In command or statement
formats, parentheses must
be entered exactly

as shown.

Wherever a hyphen appears
as the first letter of
an option, it is a
required part of that
option.

ADDITIONAL CONVENTIONS FOR THIS BOOK

Braces

{1

Brackets
[]

Braces indicate that the
item enclosed is optional.

Brackets indicate a CPL
function call, They must
be entered literally.

SFOOL [—~LIST]

CLOSE {filename}

ite'l""X{ r iten"Y} se e

DIM array (row,col)

SPOOL -LIST

DATE {option}

[EXISTS object]

PART 1

The Basic Subset

Introduction

WHAT IS CPL?

CPL is Prime's Command Procedure Language. It makes use of such
"high-level language" features as branching and argqument transfer to
simplify and automate 1long command sequences and to provide
decision—making and computational power at the command level,

HOW MIGHT YOU USE CPL?

Suppose that you frequently compile three FORTRAN 77 programs., The
commands that do this might be:

F77 JEFF -B RICHS>BIN>JEFF.RIN

F77 DICK -B RICHS>BIN>DICK.BIN

F77 BARRY -B RICHS>BIN>BARRY.RBIN
That's an annoying amount to type many times a day. But you can type
it once, with the Editor, to create a CPL program (named, say,
QOMP,CPL). Then you can run the CPL program with the simple command:

R QOMP

to compile all three programs.

1-1 Second Edition

DOC4302-190

NAMING CPL PROGRAMS

CPL programs must have names ending in .CPL (e.g., TEST.CPL, COMP.CPL).
The .CPL suffix identifies the file as a CPL program to the RESUME,
JOB, and PHANTOM commands. However, you do not have to specify the
.CPL suffix when you invoke the program. (You may specify it if you
wish.)

RUNNING CPL PROGRAMS

CPL programs may be run interactively by the RESUME or CPL commands.
They may be run as phantoms by the PHANTOM command, and as Batch jobs
by the JOB command. Thus, our sample program, COMP.CPL, could be run
by the commands:

e RESUME COMP (or R COMP)
e CPL OOMP

e PHANTOM COMP (or PH COMP)
e JOB COMP

When given the filename COMP, the CPL, PHANTOM, and JOB commands look
for the file COMP.CPL. Finding it, they run it as a CPL program. (The
RESUME command looks first for a runfile (that is, a compiled and
loaded program) named COMP.SAVE, If it doesn't find that, it looks for
a CPL program named COMP.CPL.)

If OOMP.CPL didn't exist, the four commands would then look for plain
COMP, If COOMP existed, the CPL command would run it as a CPL program.
RESUME would run it as a runfile. PHANTOM and JOB would run it as a
command input file,

Note

If a CPL program is used by many people, the System
Administrator may put it into the system ocommands directory,
COMDNCO. Then it is invoked by typing its name alone. For
example:

COMP

Second Edition 1-2

INTRODUCTION

VARIABLES, FUNCTIONS, AND DIRECTIVES IN CPL PROGRAMS

The convenience gained by creating programs oomposed exclusively of
PRIMOS commands is just the beginning of what CPL offers. CPL is
modelled on high-level algorithmic languages (such as PL/I and PASCAL).
Thus, it also offers you the convenience of:

e Variables
® Function calls

® Flow-of-control directives (such as &IF...&THEN...&ELSE, &GOTO,
&SELECT)

e Error handling

Variable references in CPL are identified by being set within percent
signs (e.g., %VAR%). Function calls are enclosed in brackets (e.g.,
[NULL A]). Control directives are preceded by ampersands (e.d., &IF,
§GOTO) . Through these simple means, you can write CPL programs of
great power and flexibility.

HOW DOES CPL WORK?

CPL has two parts: the language and the interpreter. The CPL language
allows users to write CPL programs which contain either a sequence of
PRIMOS commands or a combination of PRIMOS commands and CPL directives.
The commands give instructions to PRIMDS, or to one of its subsystems.
The directives give instructions to the CPL interpreter itself.
(PRIMDS never sees these directives; it sees only the commands which
the interpreter passes to it.)

When the programs are executed, the CPL intepreter first evaluates
variables and function calls and replaces them with their correct
values. It then interprets and acts upon CPL directives., Finally, it
passes the resulting commands to PRIMDS for execution. Thus, a lengthy
series of commands can be set in motion by a single command, relieving
the user of much repetitive typing; yet run-time decisions can be made
at any time during the file's execution.

Let's take a closer lock at how the interpreter accomplishes this.

1-3 Second Edition

DOC4302-190

The CPL Interpreter

When a CPL file is run, each line in turn is handed to the CPL
interpreter, If the line consists of a PRIMOS command (for example,

F77 JEFF), the interpreter hands it to the PRIMDS command processor for
execution. This is diagrammed in Figure 1-1.

F77 JEFF
CPL File contains:
CPL interpreter passes commands on.
Standard command processor sees:
F77 JEFF

Command Execution via CPI.
Figure 1-1

Variables: If the command contains either variables or function calls,

€ 1nterpreter evaluates the references, and substitutes the correct
values before passing the command to PRIMDS. For example, if JEFF is
the current value of a variable called FILENAME, the actions shown in
Figure 1-2 are taken. The interpreter, seeing the percent signs
surrounding FILENAME, recognizes that they signal a variable reference.
It therefore removes the characters $FILENAMES from the command line
and replaces them with the characters JEFF. Then it hands the modified
command to the command interpreter for execution.

Second Edition 1-4

INTRODUCT'ION

CPL file contains: F77 %FILENAME%

” :
CPL interpreter substitutes

variable value for variable F77

reference: // /

Command processor sees:

F77 JEFF

Execution of Command Containing a Variable
Figure 1-2

Function Calls: Function calls are treated similarly to variables,
That is, if the CPL interpreter finds a function call in a command
line, it evaluates that function call and substitutes the character
string returned by the function call for the call itself in the command
line.

If both variables and function calls are present in a command line, the
variables are evaluated first and the function calls next. This allows
the use of variables within function calls.

Figure 1-3 shows an example of a function call in a command. A CPL
program wishes to spool a report it has created. The report is
labelled, via a call on the CPL function DATE, with the date of its
creation.

The DATE function has several formats. The one shown in this example,
DATE -TAG, provides year, month, and day: an ordering which
alphabetizes accurately and is thus excellent for "tagging" reports,
data files, or listing files.

1-5 Second Edition

DOC4302-190

When the CPL interpreter sees the square brackets that mark the
function call, it evaluates the function. In this example, it locates
the current date in the correct format. It then substitutes the
character string representing this date, 800623 (that is June 23,
1980), for the character string [DATE -TAG]. This completes the
interpreter's work on this sample command, so it now passes the command
to PRIMOS for execution.

CPL file contains: SPOOL REPORT.IDATE -TAG]

CPL interpreter evaluates %
function call, substitutes / 7 /
value of function for SP

function call in command
line:

OOL REPORT.800623

Command processor sees: SPOOL REPORT.800623

Execution of Command Containing a Function Call
Figure 1-3

Directives: If the line begins with an ampersand (&), the interpreter
recognizes it as a CPL directive, For example:

&IF %A% > $B% &THEN F77 3FILENAMES

In this example, the interpreter replaces the variable references %A%,
$B%, and $FILENAME%, with their current values (say, 3, 1, and JEFF).
It tests to see if 3 is greater than 1. Since 3 1is greater, it
executes the &THEN directive, passing the ocommand F77 JEFF to the
command processor for execution., This sequence of actions is
diagrammed in Figure 1-4.

Second Edition 1-6

CPL file contains
the statement:

The CPL interpreter

reads the statement,
substituting current
values for variable

references:

The CPL interpreter
tests:

Since the test condition
is true, CPL executes

the &THEN statement,
passing the command

"F77 JEFF" to the
Standard Command Processor

Command processor executes
the command:

Execution of

INTRODUCTION

&IF %A% > %B% &THEN F77 %FILENAME%

F77 JEFF

a Sample CPL Directive
Figure 1-4

1-7 Second Edition

DOC4302-190

CPL FEATURES

The above examples demonstrate only two of the time-saving features
offered by CPL. BRut they also show how simple CPL programs can be,
CPL. has features designed to appeal to everyone, from the applications
programmer who wants a language that's:

e Simple
e Fasy to remember

e Unambiguous

to the system programmer who wants:

® Maximum control

e Flexibility

® The power to write his own commands and command functions

WHO WANTS WHICH FEATURES?

To help users find the features of CPL that will be most useful to
them, we have divided this book into three parts, each presenting one

"subset" of CPL, as follows:

Part I: The Basic Subset

This is the subset everyone needs to know., It contains the following

features:

e Arguments

e Flow-of-control directives

e &DATA groups

Allow user to supply values for CPL
variables when the CPL file is
invoked,

Allow CPL interpreter to make tests
(e.g., &IF) and take conditional
action, (e.g., &THEN &GOTO LABEL) at
run time,

Allow CPL programs to pass data to
user programs and subsystems (e.d.,
ED, SORT, SEG), and to accept input
from the user's terminal.

Second Edition 1-8

INTRODUCTION

Part I also explains and demonstrates CPL's format and CPL's default

error handling.

e Compile programs

Sample programs demonstrate CPL programs that:

e Compile, load and execute programs

® Set your own editor symbols at the start of each edit session

Part II: The Intermediate Subset

This subset contains extensions allowing considerably more flexibility
and control while still being easy to use. It offers:

Arquments with default values
and type checking

"Rest" type arguments

Further flow—of-control
directives

Local variables

Global variables

Terminal output functions
and commands

Terminal input functions

Simple error handling

Debugging

1-9

Useful in CPL programs meant
for use by several people.

Useful for specifying command
options as arquments.

Include loops and case
(&SELECT) statements.

Allow variables to be defined
within CPL programs, values to
be computed at runtime.

Allow variables to be defined
at command level, within CPL
programs, oOr within user
programs; variables last until
the user deletes them.

Allow CPL programs to print
messages at the terminal or in
output files.

Allow CPL programs to request
and use information from user
at terminal.

Allows users to override CPL's
error-handling defaults.

Allows easy debugging of CPL
programs.

Second Edition

DOC4302-190

® Wildcards and their use Allow easy specification of
groups of files and
directories.

Part ITI: Full CPL

Part III is addressed to the programmer who wants the full power and
flexibility offered by CPL. Features at this level include:

e Option arguments Allow the creation of PRIMOS-like
commands with position—independent
arguments.

e The "unclaimed" Allows the use of a variable number

argument type of arguments, with some position
independence.

e Full error handling Allows users to write their own

error-handling routines.

e Full condition handling Provides an interface to PRIMOS's
condition mechanism,

e MAbbreviation expansion Allows CPL. programs to use PRIME's
ABBREV preprocessor.

e CPL command functions Provide built-in CPL functions for
arithmetic, Boolean, string-handling,
and file-handling.

® User-written command Allow users to define their own
functions functions to supplement those provided
by CPL.

Further Information

Further information on CPL is provided in appendixes.
e Appendix A summarizes the syntax of CPL.
® Appendix B lists CPL's error messages.

e Appendix C shows how to run CPL programs as Batch jobs or
phantoms at Rev 18.1.

e Appendix D tells how to convert existing command input files to
CPL programs.

e Appendix E contains two routines by which user programs can
define and reference global variables,

Second Edition 1-10

The Basics of CPL

PRIMOS COMMANDS IN CPL PROGRAMS

The simplest CPL programs are those composed entirely of PRIMDS
commands: for example, a CPL file that opens a comoutput file and then
compiles three FORTRAN 77 programs. Such a file might be named
COMPILE.CPL . It might look like this:

COMO COMPILE.COMO

DATE

F77 THISFILE -XREF

F77 THATFILE -XREF -32T
F77 TOTHERFILE -DEBUG
OMO -E

Note

The format of CPL programs is quite simple, being based on the
principle of "one statement per line." Each example in this
chapter demonstrates oorrect format, Formatting rules are
discussed in Chapter 3.

QOMPILE.CPL is run by the command "R COMPILE", "R COMPILE.CPL", or "CFPL
COMPILE". (Since PRIMDS autamatically searches for files with a .CPL
suffix whenever the RESUME ocommand is given, you do not have to type
the suffix explicitly.

2-1 Second Edition

DOC4302-190

Note

If the System Administrator had placed OOMPILE.CPL in the
system command UFD, CMDNCO, it would be invoked by its name
alone (e.g., "OOMPILE") and would behave in all respects like a
PRIMOS external command. Similarly, if users define
abbreviations for their "Resume CPLfile" commands, they can run
those commands by simply typing the abbreviations., (See the
Prime User's Guide or the PRIMDS Commands Reference Guide for
an explanation of ABBREV.)

Since CPL programs can serve many useful purposes, some of them
may well be installed in QMDNCO. Many more will be invoked by
user defined abbreviations. However, since these invocations
vary from user to user, all examples in this guide will use the
RESUME command.

Terminal Displays With CPL

The commands contained in CPL programs are not normally printed out.
Thus, if you ran COMPILE.CPL, this is what you would see at your
terminal:

OK, r compile
24 Dec 81 11:41:52 Thursday

[FORTRAN 77 19.0]
0000 ERRORS [<.MAIN.> F77-REV 19.0]

[FORTRAN 77 19.0]
0000 ERRORS [<.MAIN.> F77-REV 19.0]

[FORTRAN 77 19.0]
0000 ERRORS [<.MAIN,> F77-REV 19.0]

The COMOUTPUT file would contain the following statements:
24 Dec 81 11:42:38 Thursday

[FORTRAN 77 19.0]
0000 ERRORS [<.MAIN.> F77-REV 19.0]

[FORTRAN 77 19.0]
0000 ERRORS [<.MAIN.> F77-REV 19.0]

[FORTRAN 77 19.0]

If you want the commands to be printed, you can preface the CPL file
with the "&DEBUG &ECHO OOM" directive. This directive tells the CPL
interpreter to print all commands at the terminal and into output
files.

Second Edition 2-2

THE BASICS OF CPL

Note

The &DEBUG directive which oontrols all of CPL debugging
facilities, is discussed in full in Chapter 10.

If the &DEBUG &ECHO directive were included, the COMPILE.CPL file would
look like this:

&DEBUG &ECHO COM

COMO COMPILE. COMO

DATE

F77 THISFILE —-XREF

F77 THATFILE -XREF -32I
F77 TOTHERFILE -DEBUG
oMo -E

When this version of COMPILE.CPL is run, the terminal session looke
like this:

OK, r compile
DATE

24 Dec 81 11:45:44 Thursday
F77 THISFILE -XREF

[FORTRAN 77 19.0]
0000 ERRORS [<.MAIN.> F77-REV 19.0]
F77 THATFILE -XREF -321

[FORTRAN 77 19.0]
0000 ERRORS [<.MAIN.> F77-REV 19.0]
F77 TOTHERFILE -DEBUG

[FORTRAN 77 19.0]
0000 ERRORS [<.MAIN.> F77-REV 19.0]
QOMO -E

The COMOUTPUT file contains this:

DATE
24 Dec 81 11:48:21 Thursday
F77 THISFILE —-XREF

[FORTRAN 77 19.0]
0000 ERRORS [<.MAIN.> F77-REV 19.0]
F77 THATFILE -XREF -32I

[FORTRAN 77 19.0]
0000 ERRORS [<.MAIN.> F77-REV 19.0]
F77 TOTHERFILE -DEBUG

[FORTRAN 77 19.0]

0000 ERRORS [<.MAIN,> F77-REV 19.0]
oM -E

2-3 Second Edition

DOC4302-190

Which PRIMOS Commands Can You Use?

CPL programs that consist entirely of PRIMDS ocommands can use the
following commands:

e All compiler commands: COBCL, F77, FIN, PL1G, PMA, RPG, etc.
e All commands which execute programs. For example:

SEG THISFILE.SEG
R TEATFILE.SAVE
R FILE.CPL
BASICV ANYFILE

e Any user commands which do not invoke a subsystem or initiate a
dialog., For example, you may use:

ATTACH
LISTF
CREATE
DELETE
CNAME
SET_ACCESS
SET_DELETE
SIZE

e Commands that invoke interactive subsystems or user programs, if
the user is going to supply the data or subcommands from the
terminal at runtime. For example:

ED

SEG
MAGNET
SORT

If you want the CPL program itself to supply the data or
subcommands, you must use CPL's &DATA directive, explained later
in this chapter.

What Commands Can't You Use?

Do not use the commands:
e (OMINPUT (in any form)

e CLOSE ALL
® DELSEG ALL

in a CPL file. Any of these commands will abort execution of the file.

If you have existing COMINPUT files, you can easily convert them to CPL
programs, For instructions on how to do so, see Appendix D.

Second Edition 2-4

THE BASICS OF CPL

USING VARIABLES IN CPL PROGRAMS

Although CPL programs composed entirely of PRIMOS commands can be
extremely useful, most users want the flexibility that comes from using
variable data in their commands. Variables are easily established in
CPL. In their simplest form, they are established with the &ARGS
directive. For example, a CPL file (named F7.CPL) that compiles any
F77 source file might be:

&ARGS FILENAME

COMO 3FILENAMES .OOMO
DATE

F77 %FILENAME% -DEBUG
QOMO —-E

In this example, the &ARGS directive defines one variable, FILENAME,
When the file is invoked, the name of the file to be compiled is
supplied as an arqument, following the name of the CPL file. For
example:

R F7 JEFF

The &ARGS directive takes the character string JEFF and assigns it to
the variable FILENAME. JEFF is now the value of FILENAME.

From now on, each time a variable reference, $FILENAMEZ, is found, the
CPL interpreter substitutes the character string JEFF for the character
string $FILENAME%. Thus, the command,

QOMO %FILENAMES .COMO
becomes,

QOMO JEFF.COMO
while the command,

F77 $FILENAME% -DEBUG
becomes,

F77 JEFF -DEBUG
Note that the variable, FILENAME, is not enclosed@ in percent signs when
it is being defined in the &ARGS directive, but is enclosed in percent

signs whenever it is "referenced"—that is, whenever its value, rather
than its name, is wanted.

2-5 Second Edition

DOC4302-190

Note

When a variable reference 1is juxtaposed to another character
string, with no blanks between them (as in $FILENAME%.COMO),
the value of the variable is cooncatenated with the other
string, (as in JEFF.COMO). 1Two or more variable references may
also be juxtaposed, (as in SFILENAME%3FILENAME%). Again, a
single string results (JEFEJEFF).

Multiple Arquments

CPL programs can contain multiple arquments. When multiple arquments
are given, the variable names in the &ARGS directive must be separated
by semicolons. For example:

&ARGS FILENAME; COMPILER

Now you can write a more general CPL file, called COMPILE_ALL.CPL, that
can compile FIN, F77, or PL1G source files. It reads:

&ARGS FILENAME; COMPILER
QOMO SFILENAMES .COMO

DATE
$COMPILERY %FILENAME% —64V -DEBUG
MO -k

Invoking this file by typing,

P. OOMPILE_ALL JEFF FIN
creates the command,

FTN JEFF -64V -DEBUG
In general, arquments are Jefined by their position in the command
line. In the above example, the first argument, "JEFF", became the
value of the first variable in the &ARGS line, "FILENAME". The second
arqument, "FIN", was assigned to the second variable, "COMPILER".
Giving the arguments in reverse order:

R COMPILE ALL FIN JEFF

would assign "FIN" to "FILENAME" and "JEFF" to "COMPILER".

Omitted Arquments

If an argument is omitted from the command line, the CPL interpreteg
sets its value to the explicit null string, ''. The PRIMDS commana
processor then removes the null string before executing the command.

Second Edition 2-6

THE BASICS OF CPL

In the above example, the command:

R COMPILE_ALL TESTFILE
assigns the value TESTFILE to the variable FILENAME, and assigns the
null string to the variable COMPILER. The resulting PRIMOS command
first becomes:

'Y TESTFILE -64V -DEBUG
and then becomes:

TESTFILE —-64V -DEBUG

Since TESTFILE is not a legal command, PRIMOS returns you to command
level with an error message.

CPL offers several ways to deal with null arguments. Some simple ones
are explained later in this chapter, in Chapter 5, and in Chapter 13.
CPL's &ARGS directive can also be expanded to:

e Check the type of each supplied argument for accuracy

e Supply default values for omitted arguments

e Make arcuments position-independent

The first two of these facilities are explained in Chapter 6. The
third is explained in Chapter 13.

DECTSTON-MAKING IN CPL PROGRAMS

When a CPL file contains only PRIMOS commands (or PRIMOS commands plus
variables and the &ARGS directive), it is executed sequentially; that
is, each command (each line of the file) is executed in turn.

Sometimes, however, you may want to alter the sequence in which the
commands are executed. To alter the "flow of control" in this way, you
use CPL's flow of control directives. The simplest and most important
of these is the &IF directive.

The &IF Directive

The form of the &IF directive is:
&IF test &THEN statement
Test is a logical test which can be answered TRUE or FALSE (for

example, &IF A = B, &IF ¥NUMBER% < 10). Statement is either a command
or a CPL directive.

2-7 Second Edition

DOC4302-190

Test may test variables, constants, functions or expressions against
each other. For example:

e ¢&IF %A% = 10 (variable and constant)
® &IF %A% > %B% (two variables)

o &IF %A% < 3B + %C3% (variable and expression)
e &IF %A% + 3B% = %D% + 30 (two expressions)

e &IF [LENGT %A%] < 100 (function and constant)

The arithmetic and logical operators that can be used are shown in
Table 2-1, They are explained in detail in the discussion of the CALC
function in Chapter 12. Note that operators must be separated by at
least one space from their operands.

Test may also test the truth or falsity of logical functions (for
example, &IF [NULL %A%]). This feature is explained later in this
chapter.

How the &IF Directive Works: When the CPL interpreter reads an &IF
directive, 1t substitutes current values for any variable references,
expressions, or function calls it finds. Then it tests to see if test
is true or false. If test is true, the interpreter executes the
command or directive that forms the &THEN statement,

An Example: Suppose you compile a program frequently, but only
occasionally want to spool the listing file. You could use an argument
and the &IF directive to tell the CPL program whether or not to spool
the listing file, Here's a program to do it (called CNS.CPL):

Note

As this program shows, you can use /* to place comments in CPL
programs. For full rules governing comments, see Chapter 3.

&DEBUG &ECHO COM
/*This program compiles and optionally spools
/*an F77 program.
/*Give the argument "SP" to spool the listing file,
&ARGS FILENAME; SP
/*Open the COMOUTPUT file and compile the program
QOMO $FILENAMES .COMO
DATE
F77 RFILENAME® -L $FILENAMES .LIST —-XREF
/*If desired, spool it.
&IF %SP% = SP &THEN SPOCL %FILENAMESY.LIST -AT MS3
cOMO -E

Second Edition 2-8

THE BASICS OF CPL

Table 2-1
CPL Operators
Operator Meaning
Arithmetic Operators

+ addition, unary plus
- subtraction, unary minus
* multiplication
/ integer division (result is truncated to

integer, fractiomal remainder is dropped)

Logical Operators

& and
| or
s not

Relational Operators

equal
less than

greater than
less than or equal

greater than or equal
not equal

XV AV AL

2-9 Second Edition

DOC4302~-190

If you give the command
R CNS JEFF SP

then the test, SP = SP, is true, and the listing file, JEFF.LIST, is
spooled, If you give the command

R CNS JEFF

the test is false (the null string does not equal "SP"). In this case,
the listing file is not spooled, 1Instead, the CPL interpreter ignores
the &THEN statement, and passes on to the next line in the program (in
this case, "COMO -E"). Figure 2-1 shows the flow chart for these
statements.

The &ELSE Directive

The &IF directive may be used by itself, as in the example above; or
it may be followed by the &ELSE directive. When used by itself, &IF
tells the interpreter either to execute or to ignore some statement.
(In the example, spool the file, or don't spool it.) When the &IF and
&ELSE directives are used together, they tell the interpreter to choose
between two courses of action.,

The form of the paired directives is:

&IF test &THEN statement-1
&ELSE statement-2

If test is TRUE, statement-1 is executed. If test 1is false,
statement-2 is executed. For example, suppose you compile many FIN
programs and a few F77 programs. You might want a program (called
COMPILE2.CPL) that looked like this:

&ARGS FILENAME; COMPILER
&IF $COMPILER® = F77 &THEN F77 $FILENAME% -DEBUG —-321
&ELSE FIN $FILENAME$ -64V

If you give the command "R QOMPILE2 THISFILE F77", the test (F77 = F77)
becomes true, and THISFILE is oompiled by the F77 compiler., If you
give any other value for the "compiler” arqument—-or if you omit that
argument altogether——THISFILE is compiled by the FIN compiler, Figure
2-2 shows the flow chart for these statements.

Nested &IFs
&IF directives may be nested: that is, either the &HEN or the &ELSE

action of one &IF directive may be another &IF directive. Nested &IF
statements are discussed in Chapter 8.

Second Edition 2~-10

THE BASICS OF CPL

FROM PREVIQUS
COMMAND

l

DOES
%SP% = SP
?

SPOOL FILE

CLOSE
COMMAND OUTPUT

FILE
TO NEXT
COMMAND

Sample &IF Statement
Figure 2-1

2-11 Second Edition

DOC4302-190

FROM PREVIOUS
COMMAND

l

DOES
%COMPILER% =

F77
?

COMPILE %FILENAME% COMPILE %FILENAME%
USING F77 USING FTN
COMPILER COMPILER

. J
Y

TO NEXT
COMMAND

Sample &IF...&THEN,..&ELSE Statement
Figure 2-2

Second Edition 2-12

THE BASICS OF CPL

Using Functions in &IF Statements

Like other high-level languages, CPL provides built-in functions to
simplify frequently made tests and computations. Functions appear in
CPL programs in the form of function calls; that is, functions and
their arquments enclosed in square brackets (i.e., [FUNCTION arg]).
When a function call appears in a command or directive, the CPL
interpreter performs the required test or computation, and substitutes
the character string thus produced for the character string represented
by the function call.

The NULL Function: One of the most useful CPL functions is the NULL
function., Its form is

[NULL var]
where var is any CPL variable.

The NULL function tests for a null character string, returning the
character string TRUE if it finds one and the character string FALSE if
it does not. Since the value of an omitted argument is the null
string, the NULL function can be used in &IF directives to test for an
omitted argument,

An Example: A test for a null argument might be used to set the home
UFD for some procedure. For example, a CPL file might begin

&ARGS WHERE
IF [NULL $WHERE%] &THEN ATTACH MY_UFD
&ELSE ATTACH %WHERE%

Specifying WHERE allows you to make any desired ATTACH; omitting WHERE
attaches you to your default choice (MY_UFD).

Note

Remember that the &ARGS directive assigns values in positional
order; that is, the first arqument given is assigned to the
first variable specified, and so on. Therefore, if you omit
any one arqument from a list of two or more, the last variable
in the &ARGS directive is the one that gets set to the null
string, If you omit two argquments, the last two variables are
set to the null string, and so on. Therefore, when you use the
MULL function to test for omitted arguments, always test first
for the last argument in line. If it is not null, none of the
others can have been omitted accidentally.

2-13 Second Edition

19,0

DOC4302-190

The EXISTS Function

The EXISTS function is a Boolean function that determines:
e Whether or not a file system object exists

e Whether it matches a specified type (file, directory, or segment
directory)

The form of the function call is:

[EXISTS pathname {type}]
pathname is the name or pathname of a file or directory.
type is one of the fcllowing:

-ANY

-ACCESS CATEGORY or —-ACAT

-DIR or —-DIRECTORY

-FILE
—SEGDIR or —SHEGMENT_DIRECTORY

If type is present, then the EXISTS function returns the value TRUE if
pathname does exist and is of the right type. It returns the value
FALSE if pathname does not exist or if it is of the wrong type. For
example, assume a UFD that ocontains three files: PAYROLL.COBCL,
QOMPILE_ALL.CPL, and PHONE LIST. Assume that it also contains two
sub~UFD's, WORKFILES and MEMOS. If you were attached to this UFD, the
function call

[EXISTS PHONE_LIST -FILE]
would return

TRUE

because PHONE LIST is a file in the current directory. The function
call

[EXISTS MEMOS —SEGDIR]
would return the value
FALSE
because MEMOS is not a segment directory.

If type is not present, the EXISTS function merely reports on the
existence or nonm-existence of pathname,

Second Edition 2-14

THE BASICS OF CPL

Continuing with examples from our imaginary directory,
[EXISTS MEMOS]

returns TRUE, while
[EXISTS PAYROLL.FIN]

returns FALSE,

Examples: The first example checks to see if a "new" file has been
written, If it has, it calls FED to allow its user to edit the new
file. If the new file does not exist, the program requests the older
version:

&IF [EXISTS MEMO.NEW] &THEN ED MEMO.NEW
&ELSE ED MEMO

The second example uses the "NOT" symbol, =, to reverse the value
returned by EXISTS. This program wants to attach to a specific
directory. If the directory doesn't exist, it will create it before
doing the ATTACH:

&IF © [EXISTS SUBDIR] &THEN CREATE SUBDIR
ATTACH *>SUBDIR

OTHER CONDITIONAL ACTIONS

In the examples above, the &THEN and &ELSE directives execute single
commands. These directives may also execute groups of commands, by
using the &DO and &END directives to mark the beginning and end of the
command groups. (§THEN and &ELSE directives may also execute GOTO's,
as discussed later in this chapter.)

DO _Groups

The format for &DO groups is as follows:

&DO
statement 1
statement 2

statement n
&END

2-15 Second Edition

DOC4302~-190

Normally, each statement in a CPL program represents one action the
interpreter is asked to perform. In a &DO group, however, all the

statements between the &DO and the &END represent a single action
the interpreter. Thus, instead of saying

&IF test &THEN statement-1
&ELSE statement—2

we can say

&IF test &THEN &DO
first—group-of-statements

&END

&ELSE &DO
second-group-of-statements

&END

to

For example, you can use &DO groups to modify an earlier sample
program, COMPILE2.CPL, so that it compiles three modules instead of

one:

&DEBUG &ECHO COM

&ARGS FILENAME; COMPILER

&IF [NULL $COMPILER%] &THEN &DO
OOBCL $FILENAMES1
OOBOL $FILENAMES2
(OBOL $FILENAMES3
SEND

&ELSE &DO
$COMPILER% $FILENAMES] —64V
RCOMPILER RFILENAME%2 —64V
$COMPILER® 2FILENAMER3 —64V
&END

Terminal sessions using this program might look like this:

OK, R COB_ALL MODULE
COBCL, MODULEL

Phase I

Phase IT

Phase III

Phase IV

Phase V

Phase VI

No Errors, Mc Warnings, Prlme V-Mode QOBCL, Rev 17.2 <MODULE>

Second Edition 2-16

THE BASICS OF CPL

COBQL, MODULE2

Phase I
Phase II
Phase III
Phase IV
Phase V
Phase VI

No

Errors, No Warnings, Prlme V-Mode QOB(L, Rev 17.2 <MODULE>

COBCL: MODULE3

Phase I
Phase II
Phase III
Phase IV
Phase V
Phase VI

No

OK,

Errors, No Warnings, Prlme V-Mode QOBOL, Rev 17.2 <MODULE>

Two further things should be noted in this example:

&GOT0s

The argument MODULE is transformed into the filenames MODULEL,
MODULE2, and MODULE3. This is made possible by CPL's method of
string substitution. Since $FILENAME$l appears as a single word
(that is, it oontains no blanks), the string produced by
substituting "MODULE" for "¢FILENAME%" is also a single word.

The statements inside the &DO group are indented. This is done
for ease of reading. CPL allows indentation wherever you wish

it. It never demands it.

CPL lends itself so well to structured programming that you may never
need the &GOTO directive. However, if you do need or want it, here's

how to

l'

do it:

Use the &LABEL directive to establish a label; for example,
&LABFL, HERE., The &LABEL directive must be on a line by itself,
immediately preceding the statement or statements to be
executed.

Use the &GOTO directive to transfer control to the statement
following the &LABEL directive. Example: &GOTO HERE.

2-17 Second Edition

DOC4302-190

The form is:

&GOTO label-name

§LABEL label-name

Once control has passed to the 1labelled statement, it continues
sequentially until redirected by some other flow-cf-control directive

or halted by the end of the program. Here is an example of &GOTOs used
with the &IF directive:

&ARGS FILENAME; COMPILER

aoMO COMPILE. OOMO

DATE
/*Test for null compiler

&IF [NULL %COMPILER%] &THEN &GOTO DFLT
&ELSE &GOTO ANY
*

&LABEL DFLT /*First alternative
FIN $FILENAME% -L %FILENAME%.LIST -64V
&GOTO WRAPUP
/*
S&LABEL ANY /*Second alternative
/%mMPILER% $FILENAMES -1 %FILENAME%.LIST —-64V
*
/*Both alternatives finish off the same way
SLABEL, WRAPUP
SPOCL; $FILENAME% .LIST
QMO -E

USING CPL WITH SUBSYSTEMS: &DATA GROUPS

Many of Prime's utilities, such as ED (the text editor) and SEG (the
V-mode and I-mode loader), require subcommands to accomplish their
function. Similarly, many user programs require that data be typed in
from the terminal. CPL's &DATA directive allows CPL programs to supply
the data or subcommands needed by these programs and utilities.

&DATA groups resemble &DO groups in that both are groups of statements
set off by an opening directive (&DO, &DATA), and a closing &END. In
each case, the statements within the group are treated as a unit.

Second Edition 2-18

THE BASICS OF CPL

The form of the &DATA group is:

&DATA command
Statement-1
Statement-2

Statement—n
&END

Command is the command that invokes the subsystem or utility; for
example: "&DATA ED filename".

Statement 1 through statement-n represent the commands or data to be
passed to the subsystem or user program. As with all CPL statements,
they may include variables, function calls, and directives.

The &END statement, on a line by itself, ends the &DATA group.

Here is an example of a CPL program that compiles, loads, and executes
a PL/I-G program:

/*CPL program to compile, load, and execute a PL1G program

/*usage: R CLR FILENAME

/%

&ARGS FILENAME

PL1G %FILENAME$ -DEBUG -B $FILENAME%.BIN /*Compile program
*

&DATA SEG /*Invoke SEG
VILOAD $FILENAME%.SEG /*Provide SEG commands
LOAD 3$FILENAME%.BIN /*via &data directives
LI PLI1GIB
LI
SA
QU
&END /*end of &data group
SEG %FILENAMES .SEG /*execute run-file

Terminal Input in &DATA Groups

Sometimes you may want a CPL file to invoke a subsystem or user
program, give a few subcommands from within the CPL file, and then
allow you to give further commands from your terminal. You do this by
including CPL's &TTY directive inside the &DATA group.

It doesn't matter where inside the group the &TTY directive is. 19.0
However, when the &DATA group is executed, the &TTY directive is always
executed last, after all other statements within the group. For this
reason, we suggest that you place the &ITY directive at the end of the
&DATA group, just before the &END statement.

2-19 Second Edition

19.0

DOC4302-190

This placement is shown in the following format:

&DATA
statement-1

statement-n
&TTY
&END

When execution reaches the &TITY directive, control returns to the user
at the terminal. When the user leaves the subsystem, control returns
to the CPL file., Leaving a subsystem happens in a variety of ways;
for example:

e The user types QUIT in SEG or CONCAT.

o The user types QUIT, FILE, or FILE filename in the Editor.

® RUNOFF or SORT finish their work and return control to command

level automatically.

Conditional Use of the &TTY Directive: You can use the &TTY directive

as part of an &IF...&THEN or &IF...&THEN...&ELSE directive. For
example, you could say:

&IF something &THEN &TTY
&ELSE another_statement

In this example, the &ITY directive executes only if "something" is
true. If "something" is false, then "another_statement" is executed,

A Sample Program Using the &TTY Directive

One use of the &TTY directive might be to "customize" the Editor for
your own use by writing a CPL file that

1. Invokes the Editor;

2. 1Issues a set of commands that set Editor modes and symbols as
you want them;

3. Gives you control at the termimal;

4, "Returns" when the edit session is finished, thus returning you
to PRIMOS command level.

Such a file (called EDD.CPL) is shown below.

Second Edition 2-20

THE BASICS OF CPL

Note

This program uses CPL's &SET VAR directive followed by a
carriage return to define a variable, EMPIYLINE, and set its
value to the true null string, This null string is then passed
to the editor, if necessary to force it from input to edit mode
and back again. The &SET VAR directive is discussed fully in
Chapter 4.

/* Usage: R EDD {filename}
/* Use filename to edit existing file
/* EDD sets edit symbols at terminal,
/* then returns you to interactive mode
/* inside the editor,
/* Leave the editor by typing Quit, File,
/* or File filename, as usual.
/* EDD will then return you to PRIMOS command level.
SARGS FILENAME
/* Create variable EMPTYLINE to hold a null string
&SET VAR EMPIYLINE :=
/* Enter editor
&DATA ED $filename%
&IF [NULL %filename%] &THEN $emptyline% /* Go into edit mode
SYMBOL, SEMICO }
MODE COLUMN
&IF [NULL %filename%] &THEN $emptyline® /*Back to input mode
&TTY /* Give user control of editor
&ND /* End &DATA group
&RETURN

Same terminal sessions using this program might look like this:

OK, r edd
INPUT

EDIT
SYMBOL SEMICO }
MODE COLUMN

INPUT

1 2 3 4 5 6 7
1234567890123456789012345678901234567899123456789012345678901234567890123456789
This is a sample file
This is the second line of the file

EDIT
file sample
OK,

2-21 Second Edition

DOC4302-190

OK, r edd sample
EDIT
SYMBOL SEMICO }
MODE COLUMN
p23
.NULL.
This is a sample file
This is the second line of the file
BOTTOM
n-1
This is the second line of the file
c/second/last/
This is the last line of the file
file
SAMPLE
CK,

Another Example

Another example shows how the &TTY directive might work with a user
program. Assume a program (named PURCHASE) that asks for five items of
information about a customer purchase:

Dept. name:

Dept. number:
Customer name:
Acct. number:
Rmount of purchase:

2 given department (for instance, the hardware department) might use a
CPL program (named P.CPL) to invoke the PURCHASE program and pass it
its first two items of information. The statements would look like
this:

&DATA R PURCHASE
HDWR
38

&TTY

&END

The example as shown could be a complete CPL program., Or, it might be
part of a larger program.

Second Edition 2-22

THE BASICS OF CPL

A terminal session might lock like this:

OK, RP

dept. name: HDWR

dept. number: 38

customer name: H.L. Smith
acct, number: 35684 -
amount of purchase: 536.89
OK,

Notes

1. By using a loop and the RESEONSE function, you ocould write
a CPL program that would pass information for any number of
purchases to program PURCHASE., Chapter 5 explains the
RESPONSE function. Chapter 9 explains loops.

2. Closely related to the &TTY directive is the &TTY_CONTINUE
directive. This directive can bring input for a &DATA
group from the terminal, just as &TTY does. But, it can
also fetch input for a &DATA group from a command input
file. For irformation on this directive, see Appendix D.

WHEN ERRORS OCCUR

Two types of errors can occur in CPL programs: CPL errors (which
prevent the CPL interpreter from executing its directives), and PRIMOS
command errors, which prevent execution of the ocommands contained in
the file.

When a CPL error is encountered, the CPL interpreter halts execution of
the CPL file and returns you to PRIMOS command 1level with an
explanatory error message. For example, misspelling &ARGS would
produce the fellowing message:

OK, R BAD EXAMPLE

CPL ERROR 52 ON LINE 1.
"&ARGGS" is not a directive (statement) recognized by CPL.

SOURCE: &arggs foo

Execution of procedure terminated. BAD_EXAMPLE (cpl)
ER!

A list of CPL error messages is provided in Appendix B.

2-23 Second Edition

DOC4302-190

PRIMOS errors may represent one of two levels of severity: error or
warning. If a warning occurs, the CPL file continues operation. If an
error occurs, the file execution is halted and the user is returned to
PRIMOS command level, usually with an error message and ER! prompt.
(The error message generally includes the name of the oommand or
subsystem that generated it.)

Users can override the handling of PRIMOS errors, Chapters 10 and 15
show how to do this. They cannot change the handling of CPL errors.

HOW CPL PROGRAMS END: THE &RETURN DIRECTIVE

Every CPL program ends with the directive &RETURN. You may either
supply this directive as the last line of the CPL file or may allow the
CPL interpreter to add the directive at the file's end.

You may also use the &RETURN directive to stop the program before the
end of the file, For example:

&ARGS A

&IF %A% > 20 &THEN &RETURN
&ELSE &DO

&END
&RETURN

WHEN ONE CPL. PROGRAM RUNS ANOTHER

By using the RESUME command, one CPL program can run another., For
example, a CPL program called ACCIS_UPDATE might contain the following
commands :

QOMC ACCTS_UFDATE. QCOMO
DATE

RESUME NEW_ACCTS
RESUME ACCTS_CLOSED
RESUME ADDRESS CHANGES
oMo -E

SPFOOL. ACCTS_UPDATE. COMO

The transfer of control that occurs when one program runs another is
much the same as the transfer of control when a user runs a program,

Second Edition 2-24

THE BASICS OF CPL

For example, when a user runs ACCIS UPDATE, the following actions

occCur:

1.

The user gives the command,
RESUME ACCTS_UPDATE

PRIMOS opens the file ACCTS_UPDATE.CPL on some available file
unit, and accepts commands from it.

ACCTS_UPDATE finishes with a &RETURN directive.
PRIMOS closes the file and returns control to the user,

The user gives the next command.

Similarly, when ACCTS_UPDATE invokes NEW_ACCTS:

1.
2.

ACCT'S_UPDATE passes the command RESUME NEW_ACCTS to PRIMOS.

PRIMOS opens the file NEW_ACCIS.CPL on some available file
unit, and accepts commands from it.

NEW_ACCTS ends with a &RETURN directive.
PRIMOS closes the file and returns control to ACCIS_UPDATE.

ACCTS_UPDATE passes its next command to PRIMDS.

When one CPL program runs another, each has (or may have) its own set
of argquments and variables. If NEW_ACCTS needs any arguments,

ACCT'_UPDATES must pass them to it, as in:

RESUME NEW_ACCTS WEST BRANCH

2-25 Second Edition

CPL. Format

CPL FORMAT RULES

The format of CPL programs 1is simple; nine rules presented in this
chapter cover all general cases. (Any specific rules that apply to a
single advanced feature are presented within the discussion of that
feature.) As these rules demonstrate, the format of CPL is similar to
that of existing high-level programming languages. Moreover, CPL'S
format supports the PRIMDOS command line syntax unchanged, for ease of
writing and use. This means that:

® PRIMDS commands may be written into a CPL program just as they
would be typed interactively.

e CPL programs support PRIMIS's use of the semicolon as a command

delimiter. This allows you to write two or more PRIMDS commands
(separated by semicolons) on a single line.

3-1 Second Edition

DOC4302-190

P RULE 1: Each statement in a CPL file must appear on a separate
line.

A statement is either a PRIMOS command, a sequence of PRIMOS commands
separated by semicolons, or a CPL directive plus its arguments. An
argument in turn may be either a PRIMOS ocommand or another CPL
directive, with its arqument(s). (See RULE 3 for handling of very long
statements.,) Examples:

A MY_UFD

This statement shows a single command on a line by itself.
CR SUBUFD1l; A *>SUBUFD1

This statement represents two commands separated by a semicolon.
&IF YVARE = 1 &THEN SEG #FIRSTFILE

The &THEN directive is the argument for the &IF directive. The command
SEG #FIRSTFILE is the arqgument for the &THEN directive. Thus, this
line represents one directive plus arguments.

&IF $VARY = 1 &THEN &GOTO LABEL1
&ELSE &IF $VAR% = 3 &THEN &GOTO LABEL3

The &ELSE directive is NOT an argument for the &IF directive.
Therefore, it--with its arguments—--goes on a new line.

&DO
SEG #FIRSTFILE
SEG #SECONDFILE
&END

The directives &DO and &END go on lines by themselves, Each statement
in the &DO group has a line to itself,

P> RULE 2: A statement may start anywhere on the line.
We sugaest that you indent CPL programs for ease of reading, as you

would indent any structured program. But there are no rules governing
indentation,

Second Edition 3-2

CPL FORMAT

P> RULE 3: To continue a statement over two or more lines place a
tilde (™) at the end of each incomplete line.

This allows you to create whatever indentations you like. For example:

&IF %VAR% = 17
&THEN SHG #FIRSTFILE
&ELSE™
&IF $VARY = 27
&THEN SEG #SECONDFILE
&ELSE SEG #LASTFILE

If there is a blank between the tilde and the word that precedes it, or

if the beginning of the next line is indented by one or more spaces,
the contents of the two lines are separated by one space. For example:

BREAK ~
HERE

is read as:
BRREAK HERE

If no space precedes the tilde and the next line starts in ocolumn 1,
the two lines are ooncatenated with no space between them. For
example:

NO BREAK™
HERE

is the same as:

NO BREAKHERE

P> RULE 4: Comments may be included in CPL programs by preceding each
comment with a slash and asterisk (/*).

Examples:
SEG #FIRSTFILE /*FIRSTFILE does such-and-so
&IF $VAR% = 1 &THEN SEG #FIRSTFILE /*Test for case 1

Comments end at the end of the physical line on which they appear.

They are not continued onto the next line, even when a tilde is used to
mark an incomplete statement.

3-3 Second Edition

DOC4302-190

Thus, the statement:

&IF 3VARE = 1 /*Comment”™
&THEN /*more comment™
SEG #MYFILE /*more comment

is read as &IF %VAR: = 1 &THEN SEG #MYFILE. The comments are ignored,
(that is, not evaluated or passed to the command processor).

p RULE 5: Every CPL file ends with a &RETURN directive. If the user
omits the &RETURN directive, it is supplied automatically by CPL.

BAs its name implies, the &RETURN directive halts execution of the CPL
procedure and returns control to its "caller". For detailed
information on the &RETURN directive, see Chapter 15.

P> RULE 6: Filenames for CPL programs follow Prime's standard rules
for filenames and end with .CPL.

Filenames must not exceed 32 characters. Allowable characters are A-Z,
0-9, _ #S$-. *g&, The first character may not be numeric. The CPL
interpreter translates lower case characters to upper case. The .CPL
suffix is included in the 32-character limit, even though you do not
need to specify the suffix when you invoke the file,

P RULE 7: Variable names must also follow standard rules.

Variable names may not exceed 32 characters in length. They may
contain only the characters A-Z (upper and lower case), 0-9, underscore
(U, and dot (.). (The CPL interpreter translates lower case letters
to upper case.) Names of local variables (such as those defined by the
&ARGS directive) must begin with a letter. Names of global variables
(explained in Chapter 4) must begin with a dot.

P> RULE 8: Any operators in a CPL expression must be preceded and
followed by one or more spaces.

CPL, uses the arithmetic operators +, -, *, /, unary +, and unary —;
the logical operators & (and), | (or), and = (not); and the relational
operators =, <, >, <=, >=, and "=. Parentheses must also be preceded
and followed by blanks. For example:

(3+5) *4
&IF STHIS%® > $THATS

Second Edition 3-4

CPL FORMAT

This spacing rule prevents oconfusion between operations and text
strings. For example, "B > A" is a logical statement that means "B is
greater than A". "B>A" is a pathname. Insisting on the use of spaces
in the logical expression keeps the distinction clear for users and for
the CPL interpreter.

P> RULE 9. Any string containing blanks or special characters
(defined below) must be placed inside single quotes when the string
is used as the value of a variable.

Special characters are:

® Single quotes (these must be doubled inside the string)., For
example:

'I''m a quoted string'
o Commas (,)
'I''m quoted, too'

® Square brackets ([1)

'Don' 't evaluate this [function call]'’
® Semicolons (;)
'This; isn''t; a; 1list; of; arguments’

e Percent signs (%)

'Don''t use the value for this $variableg'

e Hyphens at the beginning of strings, when the string is not a
CPL option argument. (Option arguments are explained in Chapter
13.)

'-64V is a FORTRAN option'

e CPL expressions, if you don't want them evaluated.

'2 + 3!
'¥A% > ¥B%'

3-5 Second Edition

DOC4302-190

CPL does not evaluate variable references, function calls, or
expressions inside quoted strings. Thus, 2 + 3 1is an expression
but '2 + 3' (quoted) is merely a string. Pence,

2+3=5
is TRUE, since 2 plus 3 equals 5; hut

'2+3'=5

is FALSE, since the strings "'2 + 3'" and the string "5" are not
identical.

Note

If operator characters are not set off by blanks, quotes are
not needed. Thus, the expression A > B (which contains the >
operator) must be quoted if it is to remain the character
string A > B, rather than being evaluated and replaceé with the
character string TRUL or FALSE; but the pathname A>B does not
need to be quoted.

Using Quoted Strings

Whenever you use a quoted string in CPL, the quotes are considered part
of the string. They do not disappear unless you remove them with the
CPL: unquote function (discussed below). Thus, you can pass quoted
strings to PRIMOS.

For example, assume a program SP.CPL which begins:

&ARGS pathname
SPOOL, $pathname% -FORM WHITE

Suppose you needed to pass this program a pathname containing a
password. PRIMOS demands that you put such a pathname inside guotation
marks. Therefore, you would type:

R SP '"TOP SECRET>NEEDLESS>REPORT'

SP.CPL would pass PRIMOS this oommand, with the pathname correctly
quoted inside it:

SPOOL '1OP SECRET>NEEDLESS>REFORT' —FORM WHITE

Second Edition 3-6

CPL FORMAT

Concatenating Quoted Strings: Concatenating two quoted strings
produces a single quoted string. For example, if

%A% = 'I''m a quo'
and

B3

'ted string'
then

$A%%B% = 'I''m a quoted string'

Quoting and Unquoting Strings: CPL provides built-in QUOTE and UNQUOTE
functions to place quotes around strings and to remove quotes from
strings. The UNQUOTE function is particularly useful, as it allows you
to use quoted strings as arguments for a CPL program, then remove the
strings inside the program. For example, you might want to pass some
PRIMOS command options, which begin with hyphens, as arguments. You
could write a CPL file (F.CPL) like this:

&ARGS filename; options
FIN %filenamet -64V -L %filename%.LIST [UNQUOTE %optionsg]

With this program, the command:

R F FOO '-XREF -EXPLIST'
produces the command

FIN FOO -64V -L FOO.LIST -XREF -EXPLIST
The UNQUOTE function removes the single quotes from the string '-XREF
-EXPLIST', replaces the function call with the unquoted string, and
passes the finished command to the command processor.
F.CPL can also be invoked by the command:

R F FOO
This invocation produces the PRIMDS command:

FIN FOO -64V -L FOO.LIST
The reference to [UNQUOTE $options$] first becomes [UNQUOTE ''], and
then becomes the unquoted null string, (that is, a string of length 0,
containing no characters), which is ignored by PRIMOS.

Note

For more information on quoted strings, see Chapter 12. For a
better way to pass command options as argquments, see Chapter 6.

3-7 Second Edition

PART II
The Intermediate Subset

Variables in CPL

INTRODUCTION

This chapter discusses:
e Defining variables with the &SET_VAR (&S) directive.

® The three types of values--string, integer, and 1logical--that
variables can possess.

e The operations that can be performed on these three types of
values.

e Local and global variables.

e The four PRIMOS commands that govern global variables.

THE &SET VAR DIRECTIVE

The &SET VAR directive has the form:

&ET VAR name-l1 {,name-2...,name-n} := value
&S

4-1 Second Edition

DOC4302-190

name—-1 through name-n are either:

® Valid variable names (for local or global variables)

e Expressions that evaluate to valid variable names.
you to simulate array variables, as in:

&SET VAR A%I% := 30
(See Chapter 11 for details,)

value may be

This allows

® A character string (up to 1024 characters, quoted if necessary)

e An integer (-2**31 + 1 to 2**3]1 - 1)

e A logical value (some form of TRUE or FALSE)

@ An expression which evaluates to any of the above

Note

Real numbers may not be used as variable values.

The assignment symbol (:=) must be given explicitly.

Examples
P & A B C:=0

This example defines three local variables, A, B, and C, and sets the

value of each to zero.

P> &ARGS UFD
&IF $UFD% = N ~
&THEN &S UFD := ACCI'S>RECV>NORTH
&FLSE &IF $UFD% = S ~
&THEN &S UFD := ACCTS>RECV>SCUTH
&ELSE &S UFD := ACCTS>RECV>CENTRAL

In this example, the &SET VAR directive allows lengthy argument§ to be
entered in abbreviated form, then expands those arquments to their full

values,

Second Edition 4-2

VARIABLES IN CPL

INTEGER VALUES FOR VARIABLES

All CPL variable values are character strings. FHowever, some character
strings (such as 3, 259, -6847) can be interpreted as integer values.
CPL allows standard arithmetic operations on these integers. (For a
summary, see Table 2-1.) The following examples are all wvalid
statements:

&SET VAR A := 4 (A = 4)
&SET VAR B := 5 (B = 5)
&SET VAR C := 3B + 1 (C = 6)
&SET VAR D := 3C% — $B% (D=1)
&SET VAR E := (%A% + 2) * %C% (E = 36)
&SET VAR F := %E% / $B3% (F =17)

Note

Remember to leave at least one blank space before and after
arithmetic and logical operators——including parentheses and the
minus signs in negative numbers.

Examples Using String and Integer Values

P> &SET VAR A := ELLEN
&SET VAR B := [LENGTH %A%]

This example gives the value ELLEN to the variable A, Then it uses
CPL's LENGTH function to set the variable B to the length of A, R
therefore has the value 5.

Note

Do not try to perform arithmetic operations on character-string
variables. For example, do NOT say:

&SET VAR A := ELLEN -
&SET VAR B := %A% + 1

Executing these commands produces an error message and aborts
execution of the CPL program,

4-3 Second Edition

DOC4302-190

P> G&SET VAR A := MY_UFD
&SET VAR B := DTHISFILE
&SET VAR C := %A%%B3

This example uses CPL's autamatic string concatenation to set the value
of C to the pathname MY UFD>THISFILE., Since CPL merely substitutes the
value of the variable for the reference—-that is, substitutes "MY_UFD"
for "sA%" and "DTHISFILE" for "$B%",—a value composed of two
juxtaposed variable references evaluates to a single character string.

P> SSET VAR A :=5
&SET VAR B := 6
&SET VAR A := %A%%B3
&SET VAR B := %A% + %B%

Since integers, in CPL, are actually character strings which evaluate
to integer values, integers too can be concatenated. When the four
commands in this example have been executed, the value of A is 56 and
the value of B is 62.

LOGICAL VALUES FOR VARIABLES

CPL variables can also take the logical values, TRUE and FALSE., Users
may use the strings "TRUE," "true," "T," and "t" to represent logical
(or Boolean) true, and "FALSE," "false," "F," or "f" for Boolean false.
CPL itself uses the spellings "TRUE" and "FALSE". You can set a
logical value yourself:

&S A := TRUE

Or you can have CPL do calculations which produce logical results. For
example:

&SET VAR A := 6
&SET VAR B := 12
&SET VAR C := %A% > %¥B%

When these three directives have been executed, C has the value FALSE,

Second Edition ' 4-4

VARIABLES IN CPL

Note

The logical operators —- >, >=, =, <=, and < — perform string
comparisons if either operand is a character string. If both
operands are integers or Boolean values, an arithmetic
comparison is done. (Boolean TRUE = 1, and Boolean FALSE = 0.)
Thus, the following expressions are all true:

128 > 40

BARREL, > APPLE

TRUE > FALSE (because 1 > 0)
34 > FALSE (because 34 > 0)

'FALSE' > 34 (because F > 3)

LOCAL AND GLOBAL VARIABLES

CPL supports two kinds of variables: 1local varisbles and global
variables.

Local Variables

All variables shown so far have been local variables. Local variables:

Are defined inside a running CPL program

Are defined by either:

—— The &ARGS directive (shown in earlier examples)

— The &SET VAR (or &S) directive (explained in this chapter)
— The SET_VAR command (explained in this chapter)

Are known only to the program that creates them

Disappear when the program that creates them returns or
terminates

Precisely because they are "local"—that is, defined within one
activation of one program--local variables from one program never
interfere with those of any other program.

>
I
(%]

Second Edition

DOC4302-190

Global Variables

Sometimes you want to define variables that can be known to, and
possibly modified by, a group of programs, rather than a single
program. At these times, you can use global variables. Global
variables are stored in one or more files inside your UFD (or inside a
subdirectory). When you activate a global variable file, all the
variables it contains can be used by you, interactively, for PRIMDS
commands, by all your CPL programs, and by programs written in
high-level languages. Global variables survive program termination and
logouts. Once defined, they last until you delete them.

The PRIMOS commands governing variables are shown in Table 4-1. They
are explained in greater detail later in this chapter.

Table 4-1
Variable-liandling Commands

Command Function

DEFINE GVAR Creates or activates a
global variable file

SET_VAR Defines a new variable or
changes the value of an
existing variable. If the
variable is a global
variable, places it in the
active global variable
file

LIST VAR Lists the variables
contained in an active
global variable file

DELETE_VAR Deletes variables from an
active global variable
file.

Second Edition 4-6

VARIABLES IN CPL

Global variables are particularly wuseful for providing easy
communication of variable values among programs, as they may be set and
referenced:

e At command level

e By any of your CPL programs

e By high-level language programs

Note

Global wvariables are not designed for interprocess
communication., Attempts to use them for that purpose are not
guaranteed to work.

Global variables must have names that begin with dots (.). For
example:

.SIZE, .UFD

At command level, global variables are defined by the SET VAR command.
Within a CPL program, they are defined by the &SET VAR directive or the
SET_VAR command. (They cannot be defined by the &ARGS directive.)
They are defined from high-level programs by the GVSSET routine, and
referenced within high-level language programs by the GVSGET routine,
These routines are described in Appendix E.

PRIMOS COMMANDS

The DEFINE_GVAR Command

Each user's global variables reside in a file that is created and
activated by the DEFINE GVAR command (abbreviation: DEFGV). The form:

DEFINE_GVAR pathname —CREATE

creates and activates a new global variable file. (If the file named
by pathname already exists, the command simply activates it.) The
command :

DEFINE GVAR pathname

activates an existing global variable file, The DEFINE _GVAR command
may be used at command level or inside a CPL program. You must create
a global variable file before you define any global variables; and you
must activate the global variable file before using the variables it
contains.

4-7 Second Edition

19.0

DOC4302-190

For example, to create an empty global veriable file named MY_VARS,
give the command:

DEFINE_GVAR MY_VARS —-CREATE
To use the file again in a later session, use the command:
DEFINE_GVAR MY_VARS

Note

If the directory containing the global variable is protected by
a password, then the user must provide the full pathname of the
file within the DEFINE_GVAR command. For example:

DEFINE_GVAR '<DISK>MY_DIR SECRETDMY_VARS'

Whenever the file is active, you may add to, delete, list, and make use
of any variables it contains. If you reference a global variable in a
CPL program without having defined a global variable file, the program
aborts with an error message.

A user may create more than one global variable file, but may only have
one (global variable file active at any time., Therefore, the
DEFINE_GVAR command activates the named file and turns off any global
variable file already active. Logging out also deactivates an active
global variable file. Global variable files may also be deactivated by
the command:

DEFINE_GVAR —OFF
Pathnames cannot be used with this form of the command.

Global variable files may be deleted with the standard PRIMOS DELETE
command, Make sure the file isg inactive (using the command DEFGV —OFF,
if necessary) before you delete it. (If you fail to do this, you will
create a confusing situation in which you will be able to list
variables from your deleted file, but will not be able to add or modify
any variables.)

The SET VAR Command

The SET VAR command has the format:
SET VAR name {:=} value

name is any legal variable name, up to 32 characters long. Names of
global variables must begin with a dot (.)

Second Edition 4-8

VARIABLES IN CPL

value can be:

® Any character string, up to 1024 characters long. Lowercase
characters are not converted to uppercase. If the string
contains special characters (as explained in Chapter 3), it must
be enclosed in single quotes. The single quotes are included in
the character count.

® A numeric character string representing an integer between the
values of -2**3]1 + 1 to 2**3] - 1,

® A character string consisting of the logical value TRUE or FALSE
(the forms ™RUE, T, true, t, FALSE, F, false, and f are
acceptable).

The assignment symbol (:=) is optional.
For example:

SET_VAR A ALPHA
defines the global variable .A and assigns it the value ALPHA.

You can use the SET VAR command interactively, at command level, to
define global variables. Or, you may use it inside a CPL program to
define either global or local variables. FHowever, since the &SET VAR
directive is faster than the SET VAR command, we recommend that you use
the SET VAR command at command level only, and use the &SET VAR
directive inside CPL programs.

For example, a CPL program (FOO.CPL) might oontain the following
statements:

/*Set variable .ERR _REPORT to the null string

&SET VAR .ERR _REFORT :=

RESUME BAR.CPL
/* BAR may change value of .ERR_REPORT
/* When BAR returns, FOO checks to see
/* if value has been changed

&IF [NULL %.ERR_REPORT%] &THEN RESUME BAR2
/*If .ERR _REFORT is still null,
/*everything's OK, keep going

&ELSE &DO

/*Something went wrong; send message and

/* halt execution
TYPE Error reported by program BAR
S&RETURN &MESSAGE %.ERR_REPORT%

&END

4-9 Second Edition

DOC4302-190

The DELETE VAR Command

The DELETE VAR command removes one or more global variables from an
active global variable file. Its form is:

DELETE VAR idl {...idn}

idl through idn may be names of global variables, they may be

wildcards, or they may be variable references or function calls which
evaluate to the names of global variables. All variables in the list
are deleted from the file. For example:

DEFINE_GVAR MY_VARS
DELETE VAR ,UFD

deletes the variable .UFD from the file MY _VARS. The command:
DELETE VAR .A .B .C

deletes three variables, .A, .B, and .C.
DELETE_VAR .AB@@

deletes all variables in the file that begin with the letters .AB.

The LIST VAR Command

The command LIST VAR lists some or all global variables contained in an
active global variable file, with their values. Its form is:

LIST VAR {name-l ... name-n}
name-1 through name-n may be either global variable names or wildcard
names. If no names are given, the LIST VAR command lists all the
variables in the file.

For example:

OK, list var

.ERR_MESSAGE Sorry, try again!

UFD alice

.DIGITS 0123456789

AL ABCDEFGH IJKLMNOPQRSTUVWXYZ
.ERR_REPORT

OK,

In this example, the value of .ERR REPORT is the null string.

Second Edition 4-10

VARIABLES IN CPL

If names are given, LIST VAR lists only those mames (or groups of
names) and their values. For example:

OK, list_var .err@

.ERR _MESSAGE Sorry, try again!
.ERR_REPORT

OK, list_var .al

AL ABCDEFGH IJKLMNOPQRSTUVWXYZ
OK,

4-11 Second Edition

Terminal Input and
Output in CPL

OVERVIEW

Tnput

CPL provides three facilities for input from the terminal:

e The &TTY directive (or its extension, the &TTY CQONTINUE
directive) is used within a &DATA group to allow the user to
enter information interactively within a utility or a user
program,

19.0

e The QUERY function, a 1logical (Boolean) function, prints a
question at the user's terminal and accepts a YES or NO answer.
The QUERY function interprets "YES" answers as TRUE and "NO"
answers as "FALSE". If any other answer is given, it prompts
"Please answer YES or NO".

® The RESFONSE function prints a request for information at the
user's terminal. RESFONSE accepts any character string the user
types in. The string is put in quotes, if it contains special
characters, and is then returned as the value of the function:
that is, the string replaces the function call.

The &ITY directive is discussed in Chapter 2. The &TTY_CONTINUE
directive is discussed in the second section of this chapter, The
Command Input Stream. The QUERY and RESPONSE directives are discussed 19.0
in both the first and second sections of this chapter, Terminal Input

and The Command Input Stream. The QUERY and RESPONSE functions are
discussed in the next section of this chapter.

5-1 Second Edition

19.0]

DOC4302-190

Output

Two facilities allow output to be printed at the terminal or into
COMOUTPUT files:

e The PRIMOS TYPE command prints any message. This command can be
placed anywhere within a CPL file.

e The &MESSAGE clause of the &RETURN and &STOP directives send a
message when the CPL program "returns", or ends. It is
particularly useful for announcing the success or failure of a
program, or for warning a user that a command line has been
entered incorrectly.

Examples of the TYPE command and the &MESSAGE clause in use are given
in the last section of this chapter. (The &MESSAGE clause may also be

used with the error-handling &STOP directive. See Chapter 15, ERRCR
AND CONDITION HANDLING, for details.)

TERMINAL INPUT

The QUERY Function

The form of the QUERY function is:
[QUERY {text} {default} {-TTY}]
Example:
[QUERY 'Et tu, Brute' TRUE]

When the QUERY function is encountered, CPL prints text on the user's
terminal, follows it with a question mark, and then waits for the user
to type an answer. The QUERY function returns either TRUE or FALSE,
depending on the user's response, as described below.

Text: The text for this function may be any character string up to 1024
characters long. If text contains blanks, it must be placed inside
single quotes.

If text is omitted, or is the null string, no prompt is printed. This
option is provided for use when prompts or instructions are printed by
some other means, such as the TYPE oommand or output from a user
program.

Second Edition 5-2

INPUT AND OUTPUT

Quoted Strings in Text: Variables and function calls are not evaluated
inside quoted strings. If you write [QUERY 'SPOOL %FILE%'], the user
will see:

SEOOL, %FILER?
at the terminal. Writing:

&SET VAR T := 'SPOOL 'SFILE%
[QUERY $T%]

lets you use the actual filename in the query.

Default: The default (if given) should be either TRUE, T, FALSE, or F
(upper or lower case). If default is specified, then a null response
to the query (that is, a carriage-return, or empty line), is taken as
the function's default response. If no default is specified, a
carriage-return is interpreted as FALSE. QUERY accepts YES, yes, Y, y,
OK, and ok as TRUE answers. It accepts NO, no, N, and n as FALSE.

-TTY: The -TTY option forces the QUERY function to take input from the
terminal, If this option is present, the CPL program containing the
query cannot be executed as a phantom or Batch job. (For example, the
function call shown above would abort any Batch or phantom program that
contained it.)

If the -TTY option is not used, the QUERY function returns one step up
the command input stream to get its input. This can be the terminal. 19.0
Or, it can be a &DATA block inside another CPL program. Or, it can be
a command input file.

These mechanisms are slightly more complex than those involved in
simply going to the terminal for a response. Therefore, they are
discussed in the second section of this chapter, after the discussion
of the QUERY and RESFONSE functions themselves.

Examples: Here are some examples of the QUERY function in use.

P> &DATA ED $NAMES
T

(Editor Commands)
FILE
&END

&IF [QUERY 'Spool file']"”
&THEN SPOCL %NAME$ -AT DOC —FORM WHITE

5-3 Second Edition

19.0|

DOC4302-190

A YES answer to the query spools the file., A NO, or a carriage-return,
does not spool it. Any other answer produces the message,

Please answer "YES" or "NO"?

For example, if the above program were named TEST.CPL, this might
happen:

OK, R TEST BOOK

SPOCL: FILE? SURE

Please answer "YES" or "NO"? Y

[SPOOL rev 18.0]

PRT011 spooled, records: 1, name:BOOK
OK,

P> &ARGS FILENAME
FIN $FILENAME$ -64V -L $FILENAME%.LIST
&IF [QUERY 'SPOOL LISTING FILE' TRUE] ~
&THEN SPOOL $FILENAMES.LIST
SRETURN

Again, the user chooses whether or not a file will be spooled. This
time, however, default has been given as TRUE. 'Therefore, a
carriage-return as answer will spool the file,

OK, R FIN_TEST THISFILE

0000 ERRORS [<.MAIN.>FIN-REV18.0]

SEOOL LISTING FILE?

[SPOOL rev 18.0]

PRT008 spooled, records: 1, name:THISFILE,LIST
OK,

The RESPONSE Function

The form of the RESPONSE function parallels the form of the QUERY
function:

[RESFONSE {text} {default} {-TTY}]

This function returns the text string typed by the user (up to 1024
characters) .

Text, again, is a character string of up to 1024 characters, quoted if
it contains blanks. The text, followed by a colon, appears at the
user's terminal. Default, if given, is another character string. If
it contains blanks, it too must be quoted. If no default is specified,
the default answer (produced by a carriage-return) is the null string.

Second Edition 5-4

INPUT AND QUTPUT

For example:

&ARGS BOOK
&IF [NULL %BOOK%] "~
&THEN &SET VAR BOOK := [RESPONSE 'Which Book']

This example tests for a null arqument. If it finds one, it asks the
user explicitly for the argument, then uses the &SET VAR directive to
give the variable its correct value.

If text and default are omitted, or if text is the null string (''), no
prompt is printed.

The —TTY option for the RESPONSE function is identical to that for the
QUERY function.

The Command Input Stream

As stated earlier, the &ITY directive, and the QUERY and RESFONSE
functions used with the —TTY option, all insist on input from the
terminal. CPL programs employing these statements canot be invoked as
phantoms or Batch jobs; the request for terminal input would abort
their execution.

In contrast, the &TTY CONTINUE directive, and the QUERY and RESFONSE
functions without the -TTY option, seek their input from the command
input stream. Therefore, they can accept input from any of three
sources:

e the terminal
® a &DATA group in a CPL program
e a OOMINPUT file

If the CPL program demanding the input was invoked from the terminal,
it takes its input from the terminal. If it was invoked from a command
input file, it seeks its input there. If it was invoked by a &DATA
directive, it gets its input from the &DATA group.

Here is a sample CPL. program oontaining a &TTY_CONTINUE directive.
(The program invokes the EDITOR to edit a specified file; goes to the
bottom of the file; goes into input mode; and waits for input.

&DATA ED TESTFILE
B

;

&TTY_OONTINUE
&END

&RETURN

5-5 Second Edition

19.0

19.0

DOC4302-190

This program (named LENGTHEN FILE.CPL) can be invoked from the
terminal. A sample session might look like this:

OK, R LENGTHEN FILE.CPL
EDIT

B

;

INPUT

We can add lines

To this file,

’
EDIT
FILE

Invoking the Program From a COMINPUT File

LENGTHEN FILE can also be invoked from a command input file such as
this one:

R LENGTHEN FILE.CPL
Add this line
And this one
And this one.

FILE
0 -TTY

The first line of this file invokes the CPL program shown above. The
second, third, and fourth lines contain input to be added to TESTFILE.
The fifth line returns to EDIT mode, and the sixth line files TESTFILE
and returns from the EDITOR.

At this point, control returns to LENGTHEN_FILE, which in turn returns
to its caller, the command input file, which then returns to the

terminal. A termimal session which ran the COMINPUT file might look
like this:

OK, GO TTY_CONT.COMI
OK, R LENGTHEN_FILE,CPL
EDIT

B

INFRUT

Add this line
And this one
And this one.

’
EDIT
FILE

TESTFILE
OK, OO -TTY

Second Edition 5-6

INPUT AND OUTPUT

Invoking the Program From a &DATA Group

If a CPL program were to invoke LENGTHEN_FILE, it would do it like
this:

&DATA R LENGTHEN_ FILE.CPL
If we keep adding lines
This file will get very long.

’
FILE
&END

Again, the first 1line invokes LENGTHEN_FILE; the next three lengthen
it; and the fourth and fifth close the file, put it away, and leave
the EDITOR.

A terminal session might look like this:

OK, R TTY CONT

EDIT

B

i

INPUT

If we keep adding lines

This file will get very long.

’
EDIT
FILE

TESTFILE
OK,

How Errors Are Handled

What would happen if the programmer forgot the semicolon or FILE
statment in the CPL or COMINPUT file? The COMINPUT program would add
every line in its f£file (including the (O -TTY which should terminate
the file) to TESTFILE. Then it would return to the terminal with an
error message and a request for input. The user would then have to
leave the EDITOR interactively in order to return to PRIMOS command
level. The sequence of events would look like this:

OK, GO TTY_CONT,COMI
OK, R LENGTHEN_FILE.CPL
EDIT

B

’

INPUT

Add this line
And this one
And this one,
FILE

0 -TTY

5-7 Second Edition

19.0

19.0

DOC4302-190

End of file. Cominput. (Input from terminal.)

[
EDIT
FILE
TESTFILE
OK,

The CPL program, on the other hand, would recognize that an error had
occurred when it came to the &END statement in the &DATA group. It
would simply terminate with an error message, like this:

OK, R TTY QONT
EDIT
B

’

INPUT

If we keep adding lines

This file will get very long.
FILE

CPL ERROR 35 ON LINE 5. LAST TOKEN WAS: "&END".
The Primos command invoked by this &DATA block has read all supplied
input data and is requesting more. To suppress this message and
continue execution using terminal input, use the &TTY directive.
SAQURCE: &END
ER!

Note that either program would abort if it were being run as a Batch

job or a phantom, since such programs cannot seek help from the
terminal.

TERMINAL OUTPUT

The TYPE Command

The PRIMOS TYPE command has the form:
TYPE text

text is a character string of up to 251 characters. When the TYPE
command is executed, text is typed at the user's terminal.

Everything following "TYPE" is taken as text, so there is no need to
quote strings, (TYPE does remove one set of quotes from around text
before it prints it,) Since TYPE is an internal command, it can be
used whenever a PRIMOS-level command can be used within a CPL file.
Since text does not have to be quoted, it can contain variables and
function calls.

Second Edition 5-8

INPUT AND OUTPUT

For example, we might write a program, called ED TEST, as follows:

&ARGS BOOK
/* Check for null argument

&IF [NULL %BOOK%] &THEN ~

&ET VAR BOOK := [RESPEONSE 'Please specify book']
ED $BOOK%
TYPE Do you want $BOOK% spooled?
&IF [QUERY '' TRUE] ~

&THEN SPOCL %$BOOK%
TYPE Thank you.
TYPE Good-bye.

A terminal session using this program might look like this:

OK, r ed test sample

EDIT

P23

.NULL,

This is a sample file.

This is the second line of the file.
BOTTOM

INPUT
Here is a third line for the file,

EDIT

file

SAMPLE

Do you want SAMPLE spooled?

yes

[SEOCL rev 18.0]

PRT022 spooled, records: 1, name:SAMPLE
Thank you.,

Good-bye.

OK,

The &MESSAGE Clause

The &MESSAGE clause is used in the &RETURN directive to cause a CPL
program to print a message and return to its caller, ‘Thus, it is
useful for announcing the success or failure of a program. Its form
is:

&RETURN &MESSAGE text

5-9 Second Edition

DOC4302-190

text may be any character string up to 1024 characters. It does not
need to be quoted if it contains blanks. For example:

&IF $LEFTOVERS: = 0 &THEN"™
&RETURN &MESSAGE It worked!
&ELSE™

&RETURN &MESSAGE $LEFTOVERS% left undone.

The &MESSAGE clause can also be used to send PRIMOS-like messages

warning users of the correct command line format for a CPL. file, For
example,

&ARGS UFD

&IF [NULL %UFD%] &THEN &RETURN &MESSAGE ~
Usage: R EXAMPLE UFD

Second Edition 5-10

INTRODUCTION

Arguments With

Type-checking and

Default Values

Previous chapters of this guide have included examples of programs that
checked for the existence of needed arguments and took action if they

did not find them,
The methods shown have included:

1. Setting up a default action
(shown in Chapter 2)

2. Using CPL's RESFONSE function
to demand the argument from
the user (shown in Chapter 5)

3. Using CPL's &RETURN &MESSAGE
directive to teminate the
CPL program and tell the user
the appropriate command
format (shown in Chapter 5)

&ARGS UFD

&IF [NULL %UFD%]"~
&THEN ATTACH MY _UFD
&ELSE ATTACH %UFD%

&ARGS UFD

&IF [NULL $UFD3%]"~
&THEN &SET VAR UFD :="
[RESPONSE 'which UFD do you”
want to attach to']

&ARGS

&IF [NULL %UFD%] &THEN™
S&RETURN &MESSAGE™
USAGE: R EXAMPLE ufd-name

Second Edition

DOC4302-190

This chapter introduces:

o A method of establishing default values for arguments within the
&ARGS directive itself., With this method, each argqument omitted
from the command line is automatically assigned its designated
default value, rather than being set to the system default.

e A method for setting a type specification (character string,
integer, etc.) for each argument in the &ARGS directive., When
this is done, each argument given in the command line is checked
against the specified type. If the types do not match, the CPL
program terminates with an explanatory error message,

e A special type of argument, REST.

TYPE CHECKING AND DEFAULT SPECIFICATION

The form of the &ARGS directive that provides type checking and default
specification is:

&ARGS name-l : type-l = default-1{;...name-N : type-N = default-N}

Either type or default (or both) may be amitted for any name. If
default is omitted, the equals sign that precedes it is also omitted.
The colon that follows name is omitted only when both type and default
are omitted, Spaces may precede or follow the equals sign, colon, and
semicolon, They are not required.

Default may be a constant or a variable reference. It must be quoted
if it ocontains a blank or a special character. It may not be an
expression or a function call. Table 6-1 shows all types and their
defaults.

Examples

P> &ARGS FILENAME

Filename is established as a variable of type CHAR (i.e., character
string). Its default is the null string ('').

P> &ARGS UFD:TREE=MY_UFD

The variable UFD must be a valid treename (that is, a pathname or
directory name). Its default value is MY UFD.

Second Edition 6-2

TYPE-CHECKING AND DEFAULT

Table 6-1
CPL Argument Types

Argument Type Explanation CPL Default Value

CHAR Any character string up to '
1024 characters long, mapped
to upper case (default)

CHARL Any character string up to "
1024 characters long,
no case shifting

TREE A filename, directory name, or v
pathname, up to 128 characters
long. The last element of the
pathname (that is, the final
file or directory name) may
contain wildcard characters. (A)

ENTRY A filename up to 32 characters v
long; may contain wildcard
characters. (A)

DEC A decimal integer (B) 0
oCT An octal integer (B) 0
HEX A hexadecimal integer (B) 0
PTR Pointer; a virtual address 7771/0
in the format "octal/octal" (the null pointer)

(segno/wordno) (C)

DATE Calendar date in the format r
mn/dd/yy .hh:mm:ss or
yy-mm—dd. hh:mm:ss

REST The remainder of the "
command line

UNCL All tokens not accounted '
for in the &ARGS picture.
(Unclaimed argquments are
discussed in Chapter 13).

(A) See Chapter 7 for explanation of wildcard characters.
(B) Numeric arguments must be within the range —-2**31+1...2%*31-1.
(C) User specified default values are not supported for this datatype.

6-3 Second Edition

DOC4302~-190

P> &ARGS NAME:=XXXXX; NUMBER:DEC

This directive defines two variables, NAME is of type CHAR (by
default); its default value is XXXXX. MNUMBER is type DEC; any value
given for NUMBER must be a decimal integer. Its default value is the
system default value, 0.

P> &ARGS UFD:TREE=%.UFD%

This directive declares a local variable named UFD., The value given
must be a valid treename. The default value is the current value of
the global variable, .,UFD. The global variable file ocontaining .UFD
must be active for this default to function correctly. Otherwise, an
invocation without arguments produces the error message:

CK, r x1

CPL ERROR 1017 ON LINE 1. LAST TOKEN WAS: "&ARGS".

In this &ARGS statement, a default value expression contains an
undef ined variable reference, or a syntax error in a variable
reference.

SOQURCE: &args ufd :tree =

Execution of procedure terminated. X1 (cpl)
ER!

P> &ARGS HEX:HEX = 4AB

This directive declares one variable named HEX, giving it a default
value of 4AB (1195 decimal). The argqument HEX will only accept values
that look like hexadecimal numbers. That is, it accepts strings that
contain only the digits 0-2 and the letters A-F, and that evaluate to a
hexadecimal number between the limits of -2**31+]1 and 2*%*31-1., It
cannot distinguish between decimal, octal, and hexadecimal numerals:
it accepts all three and interprets them as hexadecimal. For example,
it would interpret the decimal number 20 as hexadecimal 20 (decimal
32).

P> sARGS EIGHT BALL:OCT

This directive defines an octal variable named EIGHT BALL. Octal
numbers can contain only the digits 0-7; therefore, a value for
EIGHTBALL containing any other digits or characters will be rejected
with the message:

Object "9" is not a valid octal integer. (cpl) ER!

Second Edition 6—-4

TYPE-CHECKING AND DEFAULT

The arguments discussed in this chapter are position dependent
arguments, The first value found on the command line is assigned to
name-1l, the second to name-2 and so on., (For position independent
arguments in CPL, see the discussion of Option Arguments in Chapter
13.)

How Type and Default Checking Works

When you use the &ARGS directive to specify type and default values,
CPL takes the following actions:

1. It reads the command line and assigns the argquments given to
the variable-names declared in the &ARGS directive.

2. It checks whether the first argument (name-l) was omitted. If
the arqument was omitted, CPL assigns it its default value,
(default-1) as specified in the &ARGS directive. If no default
has been specified, CPL assigns it the system default value, as
shown in Table 6-1.

Note

Since these are positional arguments the first argument
is seen as "omitted" only when all arguments are
omitted. Otherwise, whatever ocomes first on the
command line (after the name of the CPL program itself)
is taken as the value of the first argument.

3. If the first arqument was assigned a value in the command line,
CPL checks to see if the given value is of the right type.
(Acceptable types are defined in Table 6-1.)

4., If the wvalue is not of the right type, CPL prints an
explanatory message and returns the user to command level with
an ER! prompt. For example:

OK, R EXAMPLE 5
Arqument "5" is not a valid treename, (CPL)
ER!

5. If the value is of the right type, CPL accepts it and moves on
to check the next argument (or, if all arguments have been
checked and accepted, to execute the next directive or
command) .

6-5 Second Edition

DOC4302-190

Example
Assume that X.CPL contains the directive:

&ARGS WHO:ENTRY=JONES; HOWMANY:DEC=10

The following table shows some invocations of X and their results:

Invocation Argument Values

R X SMITH 20 WHO = SMITH
HOWMANY = 20

R X CLARK WHO = CLARK

HOWMANY = 10 (default)

R X WHO = JONES (default)
HOWMANY = 10 (default)

R X 50 Error generated;
50 is not a valid filename.

USING REST ARGUMENTS

REST is a special argument type that allows the remainder of a command
line (after any other argquments have been read) to be passed as is to a
single variable without quoting.
REST arguments are designed for passing PRIMOS option arguments as
positional arguments to CPL programs, without having to quote them.
The rules for REST arquments are as follows:

e Only one REST arqument is permitted in an &ARGS directive.

e The REST argument must be the last argument in the directive,
For example:

&ARGS FILENAME:TREE; OTHER_ARGS:REST
The first argument on the ocommand line must be a filename (or

pathname). Everything that follows the filename becomes the value of
OTHER_ARGS.

Second Edition 6-6

TYPE-CHECKING AND DEFAULT

A Sample Program

A sample program using the directive shown above might spool a file on
a particular printer, giving the user the choice of specifying
additional options at run time:

/*Usage R SPL filename other_args
&ARGS FILENAME:TREE; OTHER ARGS:REST
SPOOL, %FILENAMEZ -AT CARCUSEL $%$OTHER_ARGS%

Here are some sample terminal sessions:

OK, R SPL X1.CPL

[SFOOL rev 18.0]

PRT003 spooled, records: 1, name:X1.CPL
OK, R SPL X1.CPL -FORM NOW -LIST

[SPOCL rev 18.0]

PRT004 spooled, records: 1, name:X1.CPL

user prt time name size opts/# form defer at: CARQUSEL
SMITH 001 0:20 MEMO.41 14

JONES 002 2:33 CL~DEPT.O 6 QA.TST
BROWN 003 13:22 X1.CPL 1

BROWN 004 13:23 X1.CPL 1 NOW

OK,

Default Values for REST Arguments

Like any other type of argument, a REST argument can be given a default
value. For example:

&ARGS FILENAME: TREE; OTHER _ARGS: REST= -LIST
SFOOL $FILENAME$ -AT CARQUSEL %OTHER_ARGS%

A terminal session with this program might look like this:
OK, R SPL2 X1.CPL

[SFOOL rev 18.0]
PRT003 spooled, records: 1, name:X1.CPL

user prt time name size opts/4# form defer at: CARQUSEL
SMITH 001 0:20 MEMO.41 14

JONES 002 2:33 CIL~DEPT.O 6 QA.TST
BROWN 003 13:27 X1.CPL 1

OK,

6~7 Second Edition

Processing Groups
of Files

GROUPING FILES AND DIRECTORIES

CPL and PRIMOS have several methods for providing easy access to groups
of files and directories:

e Prime's file-naming conventions help you set up your directory
so that you can see easily what types of files it contains.

e Prime's wildcard facility lets you access groups of similarly
named files (or directories) within a directory.

e CPL functions and loops take advantage of wildcards and naming
conventions to let you perform operations on specified groups of
files or directories.,

This chapter explains each of these topics, in turn.

FILENAME CONVENTIONS

Prime's filename conventions use suffixes to identify various sorts of
files, Using these conventions, a filename is divided into two
components: the base name and the suffix., A dot separates the
components,

(There may be any number of components in a filename, separated by

dots. However, only the final component is oonsidered to be the
suffix, Names with more than three components are not recommended.)

7-1 Second Edition

DOC4302-190

USING SUFFIXES: THE BEFORE AND AFTER FUNCTIONS

CPL's BEFORE and AFTER functions make it easy to break a filename into
its separate components. Thus, the name of a source file can be
separated into "filename" and "compiler name", dropping the dot in the
process,

The BEFORE Function

The form of the BEFORE function is:
[BEFORE string-1 string-2]

The BEFORE function returns that part of string-1 which occurs before
string-2. For example,

[BEFORE ABCD C]
returns

AB
Hence

& FILE := [BEFORE SQURCE.PL1G .]
sets the value of FILE to SOURCE.

If string-2 is not part of string-l, the BEFORE function returns the
entire string-l. For example:

[BEFORE SQURCE .]
returns
SOURCE

If string-2 represents the leftmost characters in string-l, the BEFORE
function returns the null string.

The AFTER Function

The form of the AFTER function is
[AFTER string-l string-2]

The AFTER function returns as its value that portion of string-1 which
occurs after string-2.

Second Edition 7-2

PROCESSING GRQUPS OF FILES

For example,
[AFTER ABCD C]
returns
D
Hence,
& CQOMPILER := [AFTER SQURCE.P11G .]
sets the value of COMPILER to PLIG.

If string-2 is not part of string-1, or if string-2 represents the
rightmost characters in string-1, the AFTER function returns the null
string, For example:

[AFTER SOURCE .]

returns

An Example

Here is an example of these functions in action. The CPL program shown
below compiles, loads, and runs any 64-V mode program, using the
filename as its argument.

(This program, named CIR_ALL, is a revision of the "compile, load, and
run" program shown in Chapter 2.)

/* CPL program to compile, load and
* execute any -64V mode program
* Usage: R CLR_ALL filename

&ARGS FILENAME; OPTION_LIST:REST
&S OOMPILER := [AFTER $FILENAMES$.]
&S SOQURCE := [BEFORE %FILENAMES .

/* Check for compiler suffix
&IF [NULL %COMPILER%] ~
&THEN &SET VAR COMPILER := [RESPONSE 'Please specify compiler']
/* compile the program

y $QOMPILERY $FILENAME$ -64V ~-B $SCURCE%.RIN $OPTION_LIST$

*

&DATA SEG -LOAD /* SEG names output file source.SEG
LOAD %SOURCES /* SEG finds file source.BIN

LI VOOBLB

LI PLIGIB

LI VFORMS

7-3 Second Edition

DOC4302-190

LI VAPFIB
LI VSSRILI
LI
SA
QU
&END
/*
SEG $source$
&RETURN

WILDCARDS

/* execute runfile

Wildcards allow you to specify groups of files using a single wildcard

hane,

to the rules shown in Table 7-1.

Scame Examples

A wildcard name is a file or directory name in which one or more
characters have been replaced by one or more wild characters.
character nmay represent any other character (or characters),

A number of examples follow.

A wild
according

Assume a directory, MYUFD, that contains the following files:

FOO.COBCOL BARRI . COBOL
BARR2 . COBOL BARR2 .SEG
CLR.CPL EDD. CPL

EDD. COMO EDD. COMO. QLD

BARR] . SEG
FOO. SBEG
SCROLL

The wildcard name FOO.@ matches all two—component names within MYUFD

than begin with FOO. :
FOO, OOBCL FOO. SEG

The wildcard name @.SEG matches all
.SEG:

BARRI .SEG BARR2 .SEG

two-component names that end with

FOO. SEG

The wildcard name BARR+.COBOL matches

BARRI1 .COBOL BARR2 .COBOL
The wildcard name BARR+.@ matches

BARR] . COBCL
BARR] .SEG

BARR2 .COBCL
BARRZ . SEG

The wildcard name EDD.@ matches:
EDD, CPL EDD. QOMO

Second Edition

PROCESSING GROUPS OF FILES

Table 7-1
Wild Characters

Character Function

@ Replaces any number of characters within
one component of a filename or directory
name. Stops matching at the dot (.) that
separates a name and its suffix,

@@ Replaces any number of characters in any
number of components within a file or
directory name.

+ Replaces a single character.

Negation character. The negation
character must be the first character in
the wildcard name., A wildcard name that
begins with = matches all names that don't
match the rest of the wildcard name.

7-5 Second Edition

DOC4302-190

It does not match EDD.COMO.OLD, because the single @ cannot cross the
dot (.) to match the suffix, OLD.

The wildcard name ED@@ matches:
EDD, CPL EDD, OOMO EDD, COMO.OLD
The wildcard name @RL matches all names that end with L:

FOO. QOBOL BARRI1 . COBOL BARR2 .COBOL
CLR.CPL EDD.CPL SCROLL

The wildcard name @L matches all one-component names that end in L:
SCRCLL

The wildcard name "@.CPL matches all files in the directory that do not
end with .CPL, or that do not have two components:

FOO. COBOL BARR1 .COBCL BARR] .SEG
FOO. SEG BARR2 .COBOL BARR2 . SEG
SCROLL EDD. COMO EDD, COMO. QLD

The wildcard name @@ matches all names in the directory, regardless of
the number of components they contain:

FOO. COBCL BARR1 . COBCL BARR1 .SEG
BARR2 . COBOL BARR2 .SEG FOO. SEG
CLR.CPL EDD. CPL SCROALL
EDD. COMO EDD. QOMO . OL.D

THE WILD FUNCTION

CPL's WILD function produces a list of all names within a directory
that match one or more wildcard names, It has two forms, discussed
below. The first form returns all matching names at once, in a single
list. Names within the list are separated by blanks. The second form,
which uses the —SINGLE option, returns one matching name per invocation
until the list of names is exhausted.

The reason for the two forms of the WILD function is that the list
produced by the WILD function is limited to 1024 characters. If a
longer list is produced, an error occurs which aborts the CPL program.
Since the -SINGLE option only returns one name at a time, it can handle
cases which would produce over-long lists.

Second Edition 7-6

PROCESSING GRAUPS OF FILES

Basic Format of the WILD Function

The basic format of the WILD function is:
[WILD wild-name-1 {...wild-name-n} {options}]

wild-name-1 through wild-name-n are wildcard names which the WILD
function will match, If wild-name-1 is a pathname, all the wild-names
are looked for in the directory that wild-name-1 specifies. Otherwise,
all names are searched for in the current directory. (Wild—name-2
through wild-name-n may not be pathnames.) For example:

ATTACH MYUFD
&SET_VAR SQURCES := [WILD @,COBOL @.PMA]

creates a list of all COBO, and PMA source files in MYUFD, and stores
the list in the variable, SQURCES.

ATTACH JONES
&SET_VAR SCURCES := [WILD SMITH>@.COBOL @.PMA]

creates and stores a list of all COBOL and PMA source files in the
directory SMITH.

options represent one or more optional option arguments. These place
1imits on the objects matched by the specified wildcard names. options
are as follows:

ion Meaning
—ACL Select only ACLs.
—AFTER date Select only objects created or modified

after the date specified by date. (This
information is stored as the file's DINM,
"date and time modified." Its format is

mo/da/yr.)
-BEFORE date Select only objects created or last
T modified before the specified date.
~DIRECTORY Select only directories.
—FILE Select only files.
—SEGMENT DIRECTORY Select only segment directories.

7-7 Second Edition

119.0

19.0

19.0

DOC4302-190

Some examples using options are as follows:

P> SET VAR .OBJ := [WILD @@ -SEGDIR]

creates a list containing the names of all segment directories in the
current directory. For example:

SET_VAR .OBJ := [WILD @@ —SEGDIR]

TYPE %.0BJ%
FOO.SEG BAR.SEG

P SET VAR .OBJ := [WILD @.PL1G -BF 05/30/80]

lists all PL/I, Subset G, source files created or last modified before
May 30, 1980. For example:

SET VAR .OBJ := [WILD @.PL1G -BF 05/30/80]

TYPE %.0BJ%
FOO.PL1G

P> SET VAR .OBJ := [WILD MYUFD>@@ -DIR]
lists all subdirectories in the UFD, MYUFD. For example:
SET VAR .OBJ := [WILD MYUFD>@@ -DIR]

TYPE %.0BJ%
REPORTS MEMOS OTHER_STUFF

The -SINGLE Option

The —-SINGLE option causes the WILD function to return object names one
at a time, rather than writing them into a list. Use it when you think
that WIILD's 1list might overrun its limit of 1024 characters or when
it's more convenient to deal with the file names one at a time.

The format of this version of the WILD function is:

[WILD wild-path {wild-2 ... wild-n} {options} —-SINGLE unit-var]
options are the same as those for the plain WILD function,
unit-var is a variable-name in which WILD puts the number of the file
unit it has used to open the directory to search for objects., unit-var
must be set to =zero before WILD is invoked, so that WILD can

distinguish the first call (in which it opens the unit and returns the
first matching name) from subsequent calls (in which it takes the next

Second Edition 7-8

PROCESSING GRQUPS OF FILES

name from the open unit). An example of the use of the WILD function
with the -SINGLE option follows:

&SET_VAR UN := 0
&SET VAR ONE_NAME := [WILD @Q.LIST -SINGLE UN]

The first directive defines the variable UN and sets it to zero. The
second causes CPL to:

1. Open the current directory on some available unit,
2. Change the value of UN to the number of the file unit used.
3. Find the first listing file in the directory.

4, Set the value of the variable ONE_NAME to the name of the first
listing file in the directory.

Subsequent invocations of the same function call return the second
listing file, the third 1listing file, and so on, until there are no
more listing files to be found. Then WILD returns a true null string,
and closes the directory file unit.

USING THE WILD FUNCTION IN LOOPS

Why would you want to produce a list of file or directory names? One
reason would be that you want to do something with each of the files or
directories on the list, for example, spool all your runoff files,
obtain a listing of the contents of each of your subdirectories, update
a group of reports or data files.

Tasks like these can be achieved easily by using the WILD function to
control a loop, thus performing the desired process once for each item
on the list.

CPL _Loops

CPL offers a variety of loops, which are discussed in detail in Chapter
9. Among these loops are two that work most efficiently with the WILD
function: the &DO &LIST loop and the &DO &ITEMS loop. The &DO &LIST
loop is used when the WILD function is used to get the entire list of
file or directory names at one time. The &DO &ITEMS loop is used with
WILD's —SINGLE option. An example of each of these types of loop is
shown here, to demonstrate its use with the WILD function., Full
explanations are given in Chapter 9.

7-9 Second Edition

DOC4302-190

Example of &DO &LIST Loop

The following program spools all runoff files (ending in .RUNO) in any
directory specified by the user:

&ARGS PATH
/* Specify directory
&DO X &LIST [WILD %$PATH$>@,RUNO ~FILES]
SPOOL $PATH%>%X% /* Spool each file in turn
&ND /*End loop
&RETURN /* End program

Example of &DO &ITEMS Loop

If you had many runoff files in your directory, you ocould write the
same program with a &DO &ITEMS loop, as follows:

&ARGS PATH

&SET VAR UNIT := 0 /* Initialize variable for file unit

&D0 X &ITEMS [WILD $PATH%>Q@.RUNO -FILES ~SINGLE UNIT]
SPOOL %X%

&END

&RETURN

For further examples of loops using the WILD function, see Chapter 9,
IOOPS IN CPL.

Second Edition 7-10

Decision-making

in CPL Programs

CONTROL, DIRECTIVES

Among the most powerful features of CPL are its "flow of control"
directives. These are the statements by which users specify what tests
they want performed at run-time and what actions they want taken
depending on the result of those tests. Table 8-1 shows the flow of
control directives offered by CPL.

&IF, ,.&THEN, ..&ELSE, &GO0TO, and &DO groups are explained in Chapter 2.

Nested &IF statements and &SELECT statements are discussed in this
chapter. &DO loops are discussed in Chapter 9.

SINGLE &IF STATEMENTS

A single &IF...&THEN...&ELSE statement can choose between any two
alternatives. For example:

&IF $A% > 10 &THEN SEG MYFILE
&ELSE SEG HISFILE

Multiple expressions can be combined into a single test by the use of
the logical AND (&) and inclusive OR (|). When logical AND is usedq,
both expressions must be true for the test to be true. With logical
OR, on the other hand, if either expression (or both) is true, the test
is true.

8-1 Second Edition

DOC4302-190

Table 8-1

Flow-of-Control Directives

Directive

Action

&IF...&THEN...&ELSE

&SELECT

&DO group

&DO loop

Chooses between two alternatives. &IF
statements may be nested to allow
further decisions to be made on the
basis of the former decisions.

Chooses among any number of
alternatives,

Allows a group of statements to be
treated logically as if it was a single
statement.

Allows a group of statements to be
executed:

e n times, with n as a pre-set number.
e n times, with n computed at run-time.

® while some logical expression is true
(or false).

e until some logical expression becomes
true (or false),

e until a list of items is exhausted.
Allows arbitrary transfer of control

from one place within a program to
ancther,

Second Edition

8-2

PECISION-MAKING

For example:

&IF %A% > 10 & %B% > 10 ~
&THEN SEG MYFILE
&ELSE SEG HISFILE

In this example, MYFILE will not be executed unless both A and B have
values that are greater than 10.

&IF %A% > 10 | %B% > 10 ~
&THEN SEG MYFILE
&ELSE SEG HISFILE

In this example, MYFILE will be executed if the value of either (or
both) A or B exceeds 10.

A Sample Program

The following CPL program uses logical ANDs and ORs to decide which
payroll program to run, If the program is run on March 31, June 30,
September 30, or December 31, it generates a quarterly report. If the
program is run on December 31, it also runs the yearly W-2 program. It
always runs a standard payroll program. (For details on the DATE
function, used by this program, see Chapter 12.)

&SET VAR MONTH := [DATE —-MONTH]
&SET VAR DAY := [DATE -DAY]
/* IF THIS IS THE END OF THE QUARTER, THEN RUN THE 941 REPORT
&IF (((DAYy =31) ~
& (($MONTH$ = March) | ($MONTH% = December))) ~
| ((sDAY% =30) ~
& (($MONTH% = June) | ($MONTH% = September)))) 7
&THEN SEG PGM941
/* IF THIS IS THE END OF THE YEAR, THEN RUN THE W-2 PROGRAM
&IF (($DAY% = 31) & (¥MONTH% = December)) ~
&THEN SEG W2FORM
/* AILWAYS RUN THE PAYROLL PROGRAM
SEG PAYROLL

NESTED &IF STATEMENTS

If you need to choose among three or more alternatives, you may use
either a &SELECT statement or nested &IF statements. Nested &IF
statements use another &IF statement as the argument to the &THEN
statement, the &ELSE statement, or both. For example:

&IF %A% > 10 &THEN SEG MYFILE

&ELSE &IF %A% = 10 &THEN SEG HISFILE
&FLSE SEG HERFILE

8-3 Second Edition

DOC4302-190

In this example, MYFILE will be executed if the value of A is greater
than 10; HISFILE will be executed if the value of A is equal to 10;
and HERFILE will be executed if the value of A is less than 10. (Note
that each &ELSE statement matches, or depends on, the &THEN statement
immediately preceding it.) There is no limit to the number of &IF
statements which can be nested in this manner. Here is another
example, from the field of education:

&IF SAVERAGE® > 89 &THEN &S GRADE := A
&ELSE &IF %AVERAGER > 79 &THEN &S GRADE := B
&ELSE &IF $AVERAGER > 69 &THEN &S GRADE := C
&ELSE &IF SAVERAGER > 59 &THEN &S GRADE :=
&ELSE &S GRADE := F

D

More Nested &IF Statements

A more complex form of nested &IF statement is one in which both &IF
and &ELSE statements are nested. With this construction, the rule for
matching &THEN and &ELSE statements is: An &ELSE statement matches the
last &THEN statement preceding it that is not already matched by an
&ELSE statement. Examples of such matching are shown in Figure 8-1.

&THEN true-action-1

&IF test-1 &ELSE false-action-1
&THEN &IF test-2 { &THEN true-action-2
&IF test-1 ‘ &ELSE false-action-2
l &ELSE false-action-1
‘ &THEN true-action-1
&IF test-1

&THEN true action-2

l &ELSE &IF test-2 { &ELSE false-action-2

Matching of &THEN and &ELSE Statements
Fiqure 8-1

Second Edition 8-4

DECISION-MAKING

Here is an example of this sort of construction:

&IF %A% > 50 ~ /*1st &IF tests value of A
&THEN ~ /*take this path if A > 50
&IF %B% > 50 ~ /*nested &IF tests value of B
&THEN RESUME MAXIMUM /*A and B both > 50
&ELSE RESUME MAJOR /*A > 50, B <= 50
&ELSE ~ /*take this path if A <= 50
&IF %C% > 10 ~ /*another 2nd level test
&THEN RESUME MINOR /*A <= 50, C > 10

&ELSE RESUME MINIMUM /*A <= 50, C <=10

The decisions made by this example are diagrammed in Figure 8-2.
Notice how the decision 1levels shown in this figure are reflected in
the indentation of the example. Such indentations help you remember
which &THEN and &ELSE pair goes with each &IF.

RESUME RESUME RESUME RESUME
MAXIMUM MAJOR MINOR MINIMUM

Diagram of Nested &IF Statement
Figure 8-2

8-5 Second Edition

DOC4302-190

THE &SELECT DIRECTIVE

Since CPL &IF directives can be nested, they can handle any situation
in which you need to test at run time and then take action based on the
result of that test. However, deeply nested &IF statements, as well as
&IF statements containing logical OR's, are often difficult to read.
When you want to choose between several alternatives, therefore, you
may prefer to use the &SELECT directive to provide a neatly set out
grouping of a test condition, its possible results, and the action to
be taken in every case. Figures 8-3 and 8-4 ocompare the nested &IF
statement and the &SELECT statement.

&SELECT Directive Format

The form of the &SELECT directive is as follows:

&SELECT key-expression
SWHEN expression-Al {,expression-A2...,expressiomn—An}
action-A
&WHEN expression-Bl {,expression-B2...,expression-Bn}
action-B

.

{ SOTHERWISE
action—n}
&END

key-expression may be a variable reference, a function call, or a
string, arithmetic, or Boolean expression. For example:

&SELECT %COMPILER%
&SELECT %A% + %B%
&SELECT [DATE -DOW]

expressions-1 through n represent possible values of key—expression.
In the example, "&SELECT $%COMPILER%", all further expressions would
represent possible values of the variable, $COMPILER%. In the example
"&SELECT [DATE -DOW]", all further expressions would represent the
possible results returned by the DATE function. In the example,
"SSELECT %A% + %B%", all further expressions would be integers or
arithmetic expressions representing possible values of the sum of the
current values of A + B.

Action-A through action-n may be any type of CPL statement: for
example, a PRIMOS command, a CPL directive, a &DO group, or a &DATA
group.

Second Edition 8-6

DECISION-MAKING

Actions Taken by the &SELECT Directive

When the CPL interpreter reads an &SELECT directive, it takes the
following actions:

1. It evaluates key-expression.

2. It searches through the &WHEN directives until it finds an
expression that is equal to key-expression.

3. When it finds a match, it executes the statement immediately
following that S&WHEN directive.

4, Bs soon as it has found that first match and executed the
accompanying statement, it drops to the &END statement that
concludes the &SELECT group, and continues execution with the
following statement,

5. If it finds no match, but does find an &OTHERWISE directive, it
executes the statement immediately following the &OTHERWISE
directive.

6. If it finds neither a match nor an &OTHERWNISE directive, it
executes none of the &SELECT group's statements, but continues
reading the CPL file at the statement following the &SELECT
group's &END statement.

Using Variable References

A variable reference used in a &SELECT statement evaluates to a single
expression., For example, assume that variable A has the value "5, 10,
15", and that it is used in a &SELECT statement beginning:

&SELECT %B%
SWHEN %A%, 20, 25

This statement tests the value of B three times: once against the
character string "5, 10, 15", once against the integer value "20", and
once against the integer "25." It does NOT test for the integers 5,
10, or 15, If the value of B is 20, the SWHEN test is TRUE; if the
value of B is 10, the &WHEN test is FALSE.

8-7 Second Edition

DOC4302-190

action-1

action-2

action-3

action-4

action-6 action-5

&IF 7A% = 10 &THEN action-1
S&ELSE &IF %A% = 20 &THEN action-2
&ELSE &IF 7ZA% = 30 &THEN action-3
&ELSE &IF %A% = 40 &THEN action-4
&ELSE &IF %A% = 50 &THEN action-5
&ELSE action-6

Nested &IF Statement
Fiqure 8-3

Second Edition 8-8

DECISION—-MAKING

10

20

30

40

50

other

action-1

action-2

action-3

action 4

action-5

action 6

SWHEN

SWHEN

SWHEN

SWHEN

SWHEN

&SELECT %A%

10
action-1
20
action-2
30
action-3
40
action—4
50
action-5

&OTHERWISE

&END

action—-6

The &SELECT Statement

Figure 8-4

Second Edition

DOC4302-190

&SELECT Examples

The first example demonstrates the use of multiple expressions in &WHEN
statements, In this example, the &SELECT statement adds the values of
A and B, then matches the sum against the specified integers.

&ARGS A:DEC; B:DEC
&SELECT %A% + %B%
&WHEN 10, 20, 30, 40, 50
RESUME RAND1
&WHEN 5, 15, 25, 35, 45
RESUME RAND2
&WHEN 60, 70, 80, 90, 100
RESUME RAND3
&WHEN 55, 65, 75, 85, 95
RESUME RAND4
S&OTHERWISE
RESUME RANDS5
&END

A second example applies the &SELECT statement to the academic problem
of turning students' numeric averages into letter grades. It uses
Boolean expressions for its tests. Each Boolean expression produces a
value of either TRUE or FALSE. The first TRUE expression thus equals
the key-expression, TRUE, and ends the search.

&ARGS AV

&SELECT TRUE
SWHEN %AVE <= 60
& GRADE := F
&WHEN 3AV% <= 70
&S GRADE :=D
SWHEN %AVE <= 80
&S GRADE :=
SWHEN %AV% <= 90
&S GRADE := B
&OTHERWISE
&S GRADE := A

&END

The third example, EDDD.CPL, invokes the EDITOR and sets editor symbols
in accordance with the 1language in which the source file is being
written. It takes one argument, which may be

® The name of the file to be edited

e The name of a compiler or language: OBCL, CPL, FIN, F77, PL1G,
or RPG

If the argument is supplied, EDDD.CPL decides whether the user wants to
edit an existing or create a new file in the specified language. If
the arqument is omitted, EDDD.CPL assumes that an ASCII file is to be
created (that is, a data file, a report or memo, etc.).

Second Edition 8-10

DECISION—-MAKING

EDDD.CPL is a variant of EDD.CPL, which was shown in Chapter 2.

/* EDDD.CPL is a fancier varient of FEDD,CPL

/*
&args name
&set_var empty_line :=
&select %name% /* Is name a filename or a compiler name
&when FIN, F77, PL1G, COBCL, CPL, RPG
&do
&s language := %name$%
&S name :=
&s input_mode := true
&end
&otherwise
&do
&if [null %$name%] &then &do
&s input_mode := true
&s language := ASCII
&end
&else &s input_mode := false
&end
&end /* end select
/*

/* If we've got a genuine filename, check for compiler suffix
/*
&if © $input_mode% &then ~
&if [index %name% .] "= 0 &then ~
&s langquage := [after %name% .]
&else &s language := ASCII
/*
/* enter editor
/*
&data ed %name$
&if %input_mode% &then fempty line%
&select %language$
&when FIN, F77

TABSET 7 45
&when PL1G, CPL
&DO
TABSET 3 6 9 12 15 18 21 24
SYMBOI, SEMICO }
&END
&when COBOL
&DO
MODE COOLUMN
TABSET 7 45
&END
&when RPG
MODE COLUMN
&otherwise /* set characteristics for report writing
&DO

SYMBOL SEMIQO }
TABSET 5 10 15 20 25 30
&END

8-11 Second Edition

DOC4302-190

&END /* end &select
&IF %input_mode% &THEN $empty_line$ /* return to input mode
&TY /* give user control
&END /* end &data group
&RETURN

Some sample sessions using this program might be:

/* This example sets Editor characteristics for standard report generation.
OK, R EDDD
INPUT

EDIT
SYMBOL SEMICO }
TABSET 5 19 15 2¢ 25 30

INPUT
type in whatever you want

EDIT
file it
OK,

/* This example sets Editor characteristics for an RPG program.
OK, R EDDD RPG
INPUT

EDIT
MODE COLUMN

INPUT
1 2 3 4 5 6 7
12345678901234567890123456789091234567890123456789012345678991234567890123456789

EDIT

9
OK,

/* This example sets Editor characteristics for a PL1G program.
OK, R EDDD SOMETHING.PLIG

EDIT
TABSET 3 6 9 12 15 18 21 24
SYMBOL SEMICO }

p3

.NULL.

/* this is a sample PL/I program
DCL A FIXED BIN

g
OK,

Second Edition 8-12

DECISION-MAKING

The final example uses a &SELECT group inside a MAGSAV routine,
selecting on the DATE function's DAY-OF-WEEK option to pick the
directories to be backed up on tape.

/*
/*Assign a tape drive and
/*have operator mount a tape

/*
ASSIGN MTX -ALIAS MTO0 —TPID BACKUP,NEW —-RINGON —-1600BPI
&DATA MAGSAV

0 /*Response to "Tape Unit" prompt

1 /*Response to "Enter logical tape number"
BACKUP. [DATE -TAG] /*Response to "Tape" prompt

[DATE -USA] /*Response to "Date" prompt

0 /*Response to "rev no:" prompt

/*&SELECT is now used to respond to
/*"NAME OR COMMAND" prompts
&SELECT [DATE -DOW]
&WHEN Monday, Wednesday /*DATE returns day of week

&DO /*in upper and lower case format
UFD1 /*Back up these UFD's
UFD2>SUBUFD1 /*on Monday and
UFD3 /*Wednesday

&END

&WHEN Tuesday, Thursday

&DO
UFD2>SUBUFD2 /*Back up these UFD's
UFD4 /*on Tuesday and Thursday
UFD5

SOTHERWISE
MFD) /*Back up the whole MFD on Friday

&END /*End &SELECT

/*Now tell MAGSAV to finish tape, rewind,
/*and return to PRIMOS
SR
&END /*End &DATA group
/*Unassign the tape drive

UNASSIGN —-ALIAS MTO

&RETURN

8-13 Second Edition

Loops in CPL

USING LOOPS

Loops are useful when you want some operation (or operations) to be
carried out repeatedly, with (or without) minor variations: for
example, when you want many source files compiled or spooled, or many
lines in a data file updated.

CPL provides a wide variety of loops. This chapter contains:

® An overview of the sorts of loops CPL provides, the format of
loops in general, and the behavior of loops in general.

@ A detailed explanation of how to use each kind of 1loop CPL
provides.,

OVERVIEW
CPL provides the following sorts of loops:

e The "counted" loop:
for example, &DO I := 1 &TO 100 &BY 5

e The "&DO SWHILE" loop:
for example, &DO SWHILE $J% <= 100

e The "&DO &NTIL" loop:
for example, &DO &NTIL %J% > 100

9-1 Second Edition

DOC4302-190

e The "counted" loop ocombined with a "while" or "until" test:
for example, &DO I := 1 &TO 100 &WHILE %J% > 20

e The "&REPEAT" loop, which is usually combined with a "while" or
"until" test:
for example, &DO I := 50 &REPEAT %I% * 3I% SWHILE %1% <= 100000

e The "&LIST" loop
for example, &DO I &LIST %var_list$
or &0 I &LIST 5 36 489

e The "&ITEMS" loop, a variant of the "&LIST" loop:
for example, &DO I &ITEMS [WILD @.FIN —SINGLE UNIT]

Loop Formats
All loops have the same basic format:

&DO {index-var} loop-instructions
statement-1
statement-2

statamnent—n
&END

index-var is any valid variable name. It may not be an expression.
The use of an index-var is required in all loops except the "&DO
SWHILE" and "&DO SUNTIL" 100ps.

loop-instructions contain:

® A starting value for index-var (if index-var is used)
e A method for incrementing index-var (if index-var is used)

e One or more tests for loop completion

reads the word &DO, it checks for index-var and loop-instructions. If
it finds neither, it executes the &DO dgroup once. If it finds
index-var alone, or if it finds incorrect instructions, it prints an
error message. If it finds syntactically correct loop-instructions, it
prepares to execute the loop from zero to an infinite number of times,

according to the instructions.

Second Edition 9-2

Loop Execution

When a loop is encountered in the execution of a CPL program, the
following actions occur. (Figure 9-1 contains the corresponding flow
chart.)

1. If index-var is present, it is set to its initial wvalue. The
value is tested for loop completion.

2. If a SWHILE clause is present, it is tested for loop
completion.

3., If the loop has not yet been completed, statement-1 through
statement—-n are executed.

4. When the &END statement that closes the loop 1is reached, the
&NTIL clause (if there is one) is tested. If it tests out
TRUE, the loop is complete. Execution continues with the next
statement after the loop.

5. If no &NTIL clause is true, execution returns to the top of
the locp.

6. index-var is set to its next value.
7. Tests for index-var and/or &WHILE clauses are made.

8. If tests are not TRUE, statement-1 through statement-n are
executed again.

9. And so on, until some test for completion (or some &GOTO or
&RETURN statement inside the loop) stops execution of the loop.
If no test (or directive) ever stops the loop, the loop
executes "forever"—that is, until the user hits QONTROL-P or
the BREAK key, or until someone forcibly terminates or logs out
the CPL process.

Vhen a loop terminates, index—var retains the 1last value it reached
during execution of the 1loop. In a counted loop, this will be the
first out-of-range value reached. For example, if a loop said "&DO I
:= 1 &TO 10", the value of index—var at termination would be 11. When
&DO &LIST and &DO &ITEMS loops terminate, their index-vars are null.

If a loop is halted by execution of a &G0TO, index-var retains whatever
value it had when the &GOTO was executed.

0-3 Second Edition

DOC4302-190

‘ ENTER LOOP)

Y

SET INDEX-VAR
TO INITIAL/NEXT
VALUE

l

INDEX-VAR GREATER
THAN STOP-VALUE

INDEX-VAR LESS
THAN STOP-VALUE

EXECUTE LOOP

Flow of Control in CPL Loops
Figure 9-1

Second Edition 9-4

Note

You may write a &GOTO that exits from a loop, going from a
point inside the loop to a point outside it. You may NOT use a
&OTO to enter a loop: that 1is, you may not &OTO a point
inside a loop from any point outside the locp. (If you write
such a &GOTO into a CPL program, you will get an error message
from the interpreter when you try to execute the program.)
Figures 9-2 and 9-3 show examples of legal and illegal uses of
&GOTO,

Nested Loops

T.oops in CPL may be nested: that is, one loop may be written inside
another. A trivial example, called NEST.CPL, is:

&DO A := 10 &TO 30 &BY 10 /* Start outer loop

TYPE %A%
&DO B := 1 &T0 3 /* Start inner loop
TYPE %B%
&END /* End inner loop
&END /* End outer loop

When loops are nested, the outer loop begins executing first. When it
reaches the inner loop, the inner loop executes until it's completed.
Then the outer loop continues executing. The inner loop always ends
first. Loops cannot overlap; the inner loop 1is always completely
enclosed in the outer loop.

Each time the outer 1loop executes, the inner loop is re-initialized,
and executes from start to completion again. When the outer loop does
not execute, the inner loop cannot execute.
Here is what happens when you run NEST,CPL:

OK, resume nest
10

o

OWNH%WNF—‘MWNH

&

Loops may be nested as deeply as you can keep track of them.

9-5 Second Edition

DOC4302-190

&DO I : =1 &TO 100000 &BY 2

&GOTO EXIT
&END

S&LABEL EXIT

Legal Use of &GOTO
Figure 9-2

&GOTO THERE
&0 I : =1 &TO 100000 &BY 2

Illegal Use of &GOTO
Figure 9-3

Second Edition 9-6

COUNTED LOOPS

Counted loops have the format:

&DO index-var := start-value &TO stop-value {&BY increment} {&WHILE
test} {&UNTIL test}

index-var is any valid variable name. start-value and stop-value may
be Integers, expressions, variable references, or function calls. They
must evaluate to integers. For example,

&0 A := 1 &TO 10
&0 B := 3 &TO $TOTALS
&0 C := 5 &TO [LENGTH %A%]

If a &BY clause is included, increment must also evaluate to an
integer, If a &BY clause is not included, increment defaults to 1.
Negative increments or limits may be used: for example, &DO I := 10
&T0 -10 &BY -1.

Fxecution of Counted Loops

When a counted loop executes, index-var is set to start-value.
start-value is tested to see that it 1is less than or equal to
stop-value. If it is, the loop executes. When control returns to the
top of the loop, the value of index-var is incremented by increment,
and re-tested. When the value of index-var exceeds stop-value,
execution passes to the statement following the loop's concluding &END
statement, The flow chart for the counted &DO loop is shown in Figure
9-4. As it shows, counted &DO loops are zero—-trip loops: if the
initial value of index-var is out of range, the loop is not executed.

An example of a counted loop might be:
&DO I :=1 &TO 3
FIN MODULE%I% -64V —XREF
&END

This loop will execute three times, compiling the programs MODULEL,
MODULE2, and MODULE3.

Omitted &TO and &BY Clauses

If you omit the &BY clause in a counted loop, it defaults to "&BY 1".
If you omit the &TO clause, index-var has no stop-value, but may be
incremented an infinite number of times. (For example, the directive
&DO I := 1 &BY 1 produces this type of infinite loop.) Do not omit the
&T0 clause in a counted loop without providing some other test for loop
termination.

9-7 Second Edition

DOCA302-190

Second Edition

ENTER
LooP

1S

INDEX VAR

PRESENT
?

NO

SET INDEX VAR TO
{’ INITIAL/NEXT VALUE

INDEX VAR
WITHIN CORRECT
RANGE

IS

&WHILE CLAUSE

PRESENT
?

YES
NO
IS
&WHILE CLAUSE
A TRUE NO
?
\ —pn | YES

i
EXECUTE LOOP

1

IS
&UNTIL CLAUSE
PRESENT

18
&UNTIL CLAUSE
FALSE

NO |«

)

‘ EXIT LOOP ’

Action of Counted &DO Loop
Figure 9-4

9-8

The following can be used to test for loop termination:
¢ A SWHILE clause
® An &UNTIL clause
® A &RETURN directive inside the loop

® A &GOT0 from some point inside the loop to a point outside the
loop

A counted &DO loop with neither a &TO nor a &BY clause executes once
and once only. The statement:

&§DO I :=5

would initiate such a loop. More efficient code to do the same thing
would be:

&DO
&SET VAR I :=5

&END

&DO SWHILE LOOPS

The form of the &D0O SWHILE statement is:

&D0O &WHILE test
test can be any expression which evaluates to TRUE or FALSE. A TRUE
result of the text allows the loop to execute. A FALSE result
precludes execution.

Some example of &DO &WHILE statements are:

&DO SWHILE [LENGTH $STRING%] > 0
&DO SWHILE $B% > 5 & = [NULL %A%]

&DO SWHILE loops, like counted loops, are zero—trip loops: that is,
they are tested for ocompletion at the top of the loop, and will not
execute at all if the first test shows the locp to have completed.

Since &DO SWHILE loops are tested at the top of the loop, they require
that any wvariable they test have some value assigned to it before or
during the execution of the &DO statement. In the examples above, %A%,
$B% and $STRING% must have been assigned same values before the &DO
statement is executed.

a-9 Second Edition

DOC4302-190

Here is an example of a &DO SWHILE loop. This loop edits a file that
contains a list of names, adding new names to the end of the file. The
loop executes as long as you type a name after each prompt. It ends
when you type in a carriage return, and thus set LINE to the null
string.

&DATA ED NAME_LIST
BOTTOM /* go to bottom of file
/* get first name
&S LINE := [RESPONSE 'Please enter name to be added']
&D0O SWHILE ~ [NULL $LINE%]
INSERT 3LINE¥ /* insert new line in file
/* get next name
&S LINE := [RESPONSE 'Please enter name to be added']
&ND /* end loop
FILE /* file amended list of names
&END /* end &data group

&D0 &UNTIL LOOPS

The form of the &DO &UINTIL loop is:
&DO &UNTIL test
For example:

&DO &UNTIL %A% > 50
&DO &UNTIL [LENGTH $STRING%] = 0

test is any expression which evaluates to TRUE or FALSE. The loop
executes as long as test remains FALSE.

&0 &UNTIL loops test at the bottom of the loop. Hence, they are
one-trip loops: they will always execute at least one time. A trivial
example follows.,

&ARGS STRING

&DO &UNTIL [NULL %STRING%]
/*Isolate first letter in string
&SET VAR LETTER := [SUBSTR %STRING% 1 1]
TYPE 3LETTER%
/* Remove letter from string
&SET VAR STRING := [SUBSTR %STRING% 2]
&END /* End loop

&RETURN

This loop goes through a string letter by letter, removing and printing
one character on each pass. When the last character has been removed,
the string becomes a null string, and the loop is complete, (For more
information on the SUBSTR function, see Chapter 12,)

Second Edition 9-10

LOOPS THAT (QOMBINE OOUNTING, SWHILE, AND &UNTIL TESTS

"Counted" loops, &DO SWHILE tests, and &DO &UNTIL tests may all be
combined. Some possible combinations are:

&DO DAY := 1 &TO 31 &UNTIL [NULL $RECORDS%]
&DO I := 50 &TO 1 &BY -5 &WHILE %J% > 3
&DO S&WHILE %A% > 100 &UNTIL %B% > 50

These loops execute until any one of their tests signals completion.
See Figure 9-1 for the test points they can contain.

&REPEAT LOOPS

The form of the &REPEAT loop is:

&DO index~var := start-value &REPEAT expression {&VHILE test}
{&8UNTIL test}

index-var is any valid variable name. start-value may be any string or
arithmetic expression. Expression is another string or arithmetic
expression which tells how the value index-var is to be modified on
each pass through the loop. For example:

&DO I := 5 &REPEAT %I% * 5 &UNTIL %I% > 500

This example sets I to 5 on the first trip through the loop, then
multiplies I by 5 on succeeding trips. This loop executes four times,
with I set to 5, 25, 125, and 625. At the bottom of the fourth trip,
the test "625>500" is true; so the loop teminates at the end of that
iteration.

Ncte

If no SWHILE or &UNTIL clause 1is used, &REPEAT loops are
"infinite loops"; that is, they have no test for termination.
If you write a &REPEAT loop without a &WHILE or &NTIL clause,
make sure you include some &RETURN or &GOTO directive inside
the loop so that it can terminate.

&D0 &LIST LOOPS

The form of the &DO &LIST loop is:
&DO index-var &LIST list-of-items {SWHILE test} {&UNTIL test}

index-var is any valid variable nare. list-of-items can be a list of
items separated by blanks, a varickle reference, or a function call.
(The variable reference or function call may itself evaluate to a list
of items.) The maximum length of list—of-items is 1024 characters. At

9-11 Second Edition

DOC4302-190

each iteration of the 1oop, index-var is set to the next item on the
list. When the 1list is exhausted, the loop teminates. For example:

&D0 I &LIST alpha beta gamma

This statement executes a locp three times, with I equal to alpha on
the first iteration, beta on the second iteration, and gamma on the
third iteration.

&0 I &LIST 50 0 -50

This loop also executes three times, with I set to 50 on the first
iteration, 0 on the second, and -50 on the third.

&D0 WORD &LIST %line_of_type%

This statement evaluates the wvariable line of_type, and assigns each
blank-separated word or number found 1in that line to the index
variable, word. For instance, if the value of line of_ type were "How
now, brown cow?", then the loop would execute four tires, with word set
to "How", "now, ", "brown" and “"cow?". A quoted string is a single
item. If line of type were 'How now, brown oow', the loop would
execute once, with word set to 'How now, brown cow'.

The action of the &0 LIST loop is diagrammed in Figure 9-5,
The &LIST loop can also be used with the WILD function: for example,

&0 I &LIST [WILD @,COBOL]
COBOL %1%
&END

This loop compiles all COBCOL files in the current directory. However,
if the WILD function returns a list longer than 1024 characters, an
error occurs that halts the CPL program. TIf you think this may happen
in your program, use the &ITEMS loop, described below, instead of the
&LIST loop.

A Nested Example

This module uses nested loops to spool every report in every top—level
sub-UFD belonging to UFD SALES. The outer loop attaches to each
sub-UFD in turn. The inner locp finds the files in that sub-UFD that
end in "_REPORT", and spools ther.

&NC TEPT &LIST [WILD @& -DIRS! /* Eeain dept-loop
A SALES>$DEFP1'%
§DO REPORT &LIST [WILD @ REPORT -FILES] /* Begin report-locp
SPOOL, $REPORT%

&END /* End report-loop
&END /* End dept-—loop
A SALES /* Attach back to UFD SALES

Second Edition 9-12

LOOPS

(ENTER LOOP ,

ARE
THERE ANY
ITEMS LEFT IN

THE LIST
?

(EXIT LOOP)

SET INDEX-VAR
TO NEXT
ITEMIN LIST

|

EXECUTE
LOOP

C Y,

Action of &DO &LIST Loop
(8WHILE and/or &UNTIL tests may be added)

Figure 9-5

9-13 Second Edition

DOC4302-190

&D0 &ITEMS LOOPS

The &DO &ITEMS 1loop is similar to the &DO &LIST loop in that it
processes a sequence of items, and temminates when it has exhausted the
items, It differs from &DO &LIST in that it does not have a 1list of
items to read. Instead, the word &ITEMS is followed by an expression
which is evaluated at each iteration., Usually, expression is the WILD
function with the -SINGLE option, returning one filename per iteration.

The form of the &DO &ITEMS loop is:
&DO index-var &ITEMS expression {&WHILE test} {UNTIL test}

It is equivalent to "&DO I := expression &REPEAT expression &WHILE
[NULL %I%]". The action of the &DO &ITEMS loop is shown in Figure
9-6'

An example of a &DO &ITEMS loop is:

&S UNIT := 0 /*This step is essential
&DO I &ITEMS [WILD @.COBOL @.FIN —SINGLE UNIT]
&S COMPILE := [AFTER %I% .]
$COMPILEY %1%
&END

This example compiles all COBOL and FORTRAN files in the user's current
directory, no matter how many of them there are. It works as follows:

1. The directive & UNIT := 0 initializes the variable unit with a
value of zero. (Any variable name may be used. unit is only a
handy mnemonic.)

2. The WILD function sees that unit is set to zero. It therefore
opens the user's current directory on some available unit, and
resets unit to identify the unit it's using. (It wuses the
decimal number of the file unit.)

3. Since the option —SINGLE has been given, the WILD function
finds the first matching file, and returns that filename as its
value,

4. The &DO processor assigns the value of the WILD function to I.

5. The loop executes.

6. When the loop returns to the &DO statement, the WILD function
is re~invoked, It reads the open unit number from unit, goes

to that unit, and selects the next matching file.

7. The loop executes again.

Second Edition 9-14

‘ ENTER LOOP ’

lf \
EVALUATE
EXPRESSION

FOLLOWING
&ITEMS

l

ASSIGN VALUE
OF EXPRESSION
TO INDEX-VAR

|

IS
INDEX-VAR

NULL
?

EXIT LOOP)
EXECUTE LOOP

YES

Action of &DO &ITEMS Loop
(8WHILE and/or &UNTIL tests may be added)

Figure 9-6

9-15 Second Edition

DOC4302-190

8. When the WILD function finds no matching file, it returns a
string of length zero and closes the file unit it was using. I
is then set to the null string, and the locp terminates
immediately,

This loop is equivalent to the following &REPEAT 1oop:

&S UNIT := 0

&DO I := [WILD @.COBOL @.FIN —SINGLE UNIT] ~
&REPEAT [WILD @.COBOL @.FIN —SINGLE UNIT] ~
SWHILE = [NULL $%I%]

&S COMPILE := [AFTER $I% .]

$OOMPILE: %I%

&END

Loops That Read and Write Files

The &DO &ITEMS loop can also be used with CPL's file I/0 functions, as
shown in the following example, (For information on these functions,
see Chapter 12.)

/* Open file ALPHA for reading and writing
&S UNIT := [OPEN_FILE ALPHA STATUS -MODE R]
/* Read each line in turn
&0 I &ITEMS [READ FILE $UNIT$ STATUS]

&END
CLOSE ALPHA

This example:
1. Opens the file alpha for reading on some available unit,

returning the number of the unit (in decimal) as the value of
the variable, unit.

2. Reads one line from the file each time the &DO &ITEMS statement
is encountered.

3, Terminates when it reaches the end of the file.

(Note that in this case, the file is not closed autamatically. The
user must close it after the loop is completed.)

Second Edition 9-16

Debugging
and Error Handling
in CPL

ENQOUNTERING ERRORS

CPL programs may encounter two types of errors:

e The commands executed by the CPL program may produce run—-time
errors: for example, a command may try to open a file that does
not exist,

e The CPL directives themselves may be written incorrectly: for
example, the word &MHEN may have been omitted from an &IF
statement.

CPL offers several levels of control in dealing with run-time errors.,
The simplest method is shown in the second half of this chapter, More
advanced methods are shown in Chapter 15,

There is only one way to deal with CPL errors: that is, to debug the
program. CPL provides three useful tools for debugging: no—execute
mode, echoing, and variable watching. These are explained in the first
half of this chapter.

DEBUGGING CPL PROGRAMS

l?emgging is enabled and disabled by the &DEBUG directive. Its format
is:

&DEBUG options

10-1 Second Edition

DOC4302-190

Available options are shown in Table 10-1, and are explained below.

If no &DEBUG directive is given, debugging is disabled, (This is
equivalent to "&DEBUG &OFF".)

If &DEBUG is given without options, the result is equivalent to
&DEBUG &NO_EXECUTE &ECHO ALL

&DEBUG directives may appear anywhere in a CPL program, A &DEBUG
directive takes effect when it is read, superseding any previous &DEBUG
directives.

If one CPL program RESUMES another program or &CALLs a subroutine, the
first program's d&ebugging options are suspended while the called
program or routine executes. The debugging options are re-enabled when
execution of the first program resumes.,

§NO EXECUTE/SEXECUTE

This pair of options determines whether or not commands will be
executed when the CPL program is run, Specifying &DEBUG &NO_EXECUTE
(or saying simply "&DEBUG"), allows you to run through, or "rehearse",
a CPL program. When you give the RESUME command for a program which
begins with "&DEBUG &NO_EXECUTE", the CPL interpreter reads the CPL
file and interprets its directives as usual. However, it does not pass
any commands to PRIMDS. If a CPL error is found, the usual message is
sent and execution is terminated.

The &NO_EXECUTE option thus lets you run through a program as many
times as you need to get rid of syntax errors before performing any of
the commands the file oontains. It is especially useful for the CPL
programs which:

e Take a long time to execute

e Edit or update sensitive files

e Use peripheral equipment, such as magnetic tapes

e Contain any sequence of commands which should not be interrupted

&EXECUTE allows the execution of PRIMOS commands.,

If neither &EXECUTE nor &NO_EXECUTE is specified, the default is
&EXECUTE,

Second Edition 10-2

DEBUGGING AND ERROR

Table 10-1
&DEBUG OPTIONS

Option Action

&OFF Turns off all debugging options,
Initially all options are off.

&NO_EXECUTE, &NEX Suppresses execution of PRIMOS
commands, but interprets CPL
directives.

&EXECUTE, &EX Enmables execution of PRIMDS
commands.

&ECHO {ALL, COM, DIR} If ALL is specified, echoes PRIMDS

commands and CPL directives. If
(OM is specified, echoes only
PRIMDS commands. If DIR is
specified, echoes CPL directives.
Default is ALL.

&NO_ECHO {ALL, QOM, DIR} ALL cancels all echoing. oM
cancels echoing of PRIMDS commands.
DIR <cancels echoing of CPL
directives. Default is ALL.

SWATCH {varl var2 ... varl6} Adds the specified variables to the
watchlist. When the wvalue of a
watched variable 1is changed using
the &SET VAR directive (not the
SET VAR command), CPL reports this
fact and the rew value of the
variable, At most 16 variables can
be on the watchlist. If no
variables are present, all
variables are watched.

&NO_WATCH {varl var2 ... varlé} Removes the specified variables
from the watchlist. If no
variables are specified, watching
is turned off completely.

10-3 Second Edition

DOC4302-190

&ECHO/&NO_ECHO

&ECHO and &NO_ECHO control the echoing of commands and directives. If
neither is specified, default is &NO_ECHO.

If &ECHO DIR is given, CPL directives are echoed on the terminal as
they are read. (A loop directive echoes each time the locp 1is
executed.) For example, resuming this CPL program:

&DEBUG &ECHO DIR
&0 I :=1 &TO 3

&TYPE %1%
&END

produces this terminal session:

OK, R EX

&D0 I :=1 &TO 3
1

&END

&D0 I :=1 &TO 3
2

&END

&D0 I =1 &TO 3
3

&END

OK,

If &ECHO (OM is given, PRIMOS oommands are echoed. If our sample
program read "&DEBUG &ECHO OOM", its execution would look like this:

OK, R EX
TYPE 1
1
TYPE 2
2
TYPE 3
3
OK,

If &ECHO ALL (or simply &ECHO) is given, commands and directives are
both echoed. If our sample program said "&DEBUG &ECHO", a terminal
session would look like this:

OK, R EX

&D0O I :=1 &T0 3
TYPE 1

1

&END

&0 I :=1 &0 3
TYPE 2

Second Edition 10-4

DEBUGGING AND ERROR

2

&END

&D0 I :=1 &TO 3
TYPE 3

3

&END

OK,

&NO_ECHO turns off echoing. If a program begins with the directive
"&DEBUG &ECHO ALL", and later contains the directive
"&DEBUG &NO_ECHO COM", then echoing of commands is halted, but echoing
of directives continues.

SVATCH/&NO WATCH

The SWATCH directive lets you trace the values of up to 16 local and/or
global variables, watching whatever changes are made by the &SET VAR
directive. (This includes changes made by the CPL interpreter itself,
such as those which occur by setting the index variable of a locp or
recording a new SEVERITY value. They do not include values set by the
SET VAR command or the GVSSET routine.) For example, this trivial
program:

&DEBUG &WATCH
&0 I :=1&TO 5

& J = %1% * 3I%
&END

produces the following result:

OK, R EX2

Variable "I" set to "1" at line
Variable "J" set to "1" at line
Variable "I" set to "2" at line
Variable "J" set to "4" at line
Variable "I" set to "3" at line
Variable "J" set to "9" at line
Variable "I" set to "4" at line
Variable "J" set to "16" at line 3.
Variable "I" set to "5" at line 4,
Variable "J" set to "25" at line 3.
Variable "I" set to "6" at line 4.
OK,

B W W WK
e L) - - . . .

Note that the loop's index is shown as being set to its first value at
the top of the 1loop, but as being incremented at the &END statement
each time thereafter.

10-5 Second Edition

DOC4302-190

ERROR HANDLING

Whenever a PRIMDS command is executed, it produces an error code (known
as a severity code). Possible severity codes are:

Code Meaning

0 No error
positive integer Error

negative integer Warning

CPL's default response to these severity codes is to ignore codes of 0
or less, but to halt execution of the CPL program if a severity code of
1 or greater is received,

The &SEVERITY directive allows CPL to perform error checking
automatically after the execution of each command. Therefore, if you
wish to alter CPL's default error handling during part or all of any
CPL program, you may use a &SEVERITY directive to specify the action
you want taken, Possible &SEVERITY directives are:

Directive Meaning
SWARNING
&SEVERITY |&ERROR |&IGNORE Ignore all error codes, continue
execution.
&SEVERITY &WARNING &FAIL Halt execution if any warning or
error is received.
&SEVERITY &ERROR &FAIL Ignore warnings (code < 0), halt
execution for errors (code > 0).
(Default)
&SEVERITY (equal to &SEVERITY &WARNING
&ICGNORE)
&SEVERITY &ERROR &ROUTINE Invoke the specified routine if
routine-label an error occurs. Jgnore
warnings.

&SEVERITY SWARNING &ROUTINE Invoke the specified routine if
routine-label any warning or error is
received.

Second Edition 10-6

DEBUGGING AND ERROR

&SEVERITY directives may be placed anywhere in a CPL program. They
become effective when execution of the program reaches the line in
which they occur, and they remain effective until either

® The program terminates

® A new &SEVERITY directive is encountered
If one CPL program invokes another (or if it invokes one of its
routines), then the effectiveness of the &SEVERITY directive is
suspended while the second program (or routine) executes. If the
invoked program or routine defines its own error handling, that takes
effect, If the program defines no error handling, CPL's default error
handling takes effect from the time the new program or routine is
invoked until it returns to its caller (that is, to the first CPL
program) .

A possible sequence of error handling is shown in Figure 10-1. Chapter
15 contains further explanation of CPL's error handling, including:

e How to define your own error conditions.
e How to write error-handling routines.
e How to define your own condition handling.

e How to make a &RETURN directive pass a severity code to its
caller.

e How to use the &STOP directive to halt a routine and its calling
program simultaneously.

10-7 Second Edition

DOC4302-190

6.

Second Edition

Y

AR, CPL
(1) | &SEVERITY sWARNING &FAIL
(2) | rRESUME BB.CEL
(5)

2 e o L]

(6) SEVERITY &ERROR &FAIL

(7) &RETURN

Action

AA,CPL sets error handling to
&SEVERITY SWARNING &FAIL.
AA,.CPL invokes BB.CPL.

BB.CPL sets error handling to
&SEVERITY &ERROR &IGNORE.

BB,CPL returns to AA.CPL.

Execution of AA.CPL continues.

Execution of AA.CPL encounters
&SEVERITY &FRROR &FAIL
directive.

AA,CPL returns.

f

BB. CPL

(3)
&SEVERITY &ERROR &IGNORE

;RETURN
(4)

Error Handling

Program will halt if it
gets a warning message.

AA.CPL's error handling is
suspended.

No error codes can halt
BB.CPL's execution, (PRIMOS
condition codes, such as
pointer faults or access
violations, can still halt
BB.CPL's execution,)

BB.CPL's error handling is
terminated,

Error handling is &SEVERITY

&WARNING &FAIL again, as AA.CPL
originally set it,

AA.CPL's error handling
changes to system default
error handling (that is, halt
for errors, ignore warnings).

AA.CPL's error handling is
terminated. (Error handling is
determined by AA.CPL's caller.)

Socope of &SEVERITY Directive
Figure 10-1

10-8

PART III

Full CPL

Expression

Evaluation in CPL

INTRODUCTION

This chapter provides a detailed explanation of how CPL handles
character strings and arithmetic expressions. The first half of the
chapter discusses string handling, with particular reference to:

How variables are defined and evaluated.
How function calls are used and evaluated.

How quoted strings are handled in variables, in function calls,
and in CPL generally.

How the RESCAN function may be used to force evaluation of a
quoted string containing variables or function calls.

How the &EXPAND directive may be used to allow commands in a CPL
program to contain abbreviations from an ABBREV file.

The second half of the chapter discusses the evaluation of arithmetic
expressions in CPL. It also explains the CALC function, with which
users may force evaluation of an arithmetic expression within a command
or a function call.

11-1 Second Edition

DOC4302-190

VARIABLES

A CPL variable name may be up to 32 characters in length., It may
contain the letters, digits, " ", or ".". Names of local variables
must start with a letter (to avoid confusion with numbers). Names of
global variables must start with ".". "$" is reserved for predefined
PRIMOS variables, Variables always take character strings as values;

the maximum length of a value is 1024 characters.

Variables are not declared in CPL. They are defined by assigning them
a value for the first time. There are two kinds of variables, local
and global. Both may be assigned values using the &ARGS directive, the
&SET VAR directive, or the SET VAR command. For example:

&SET VAR PL1_PROG := RICHS>EVAL.PL1
sets the local variable PL1_PROG to the value "RICHS>EVAL.PL1".
The SET VAR command is used to define global variables at command

level. The &SET VAR directive, which is both faster and more flexible,
should be used for defining variables within a CPL program.,

Local Variables

Local variables are defined only in the activation of the CPL program
in which they are set; they are not defined in a recursive invocation
of the same CPL program, nor in an invocation of another CPL program.
If their values are needed in an invocation of a CPL program, local
variables must be passed as arguments. Local variables are deleted
when the program in which they are defined finishes. [Local variables
cannot be set outside a CPL invocation.

Global Variables

Globabl variables are distinguished from local vwvariables by having
names that start with a period. So,

&SET VAR .HOME := RICHS

sets the global variable .HOME to the value "RICHS". Global vwvariables
are associated with a particular user, and not with any program; they
can be referenced in any CPL procedure invoked by that user. The names
and values of global variables survive the invocation of a program in
which they are used. Thus, if a user ran a CPL program which set a
global variable, .A GLOB VAR, he could run another CPL program which
referenced that variable. Furthermore, the names and values of global
variables survive logout. When a user logs in, any global variables he
defined in a previous session are still available.

Second Edition 11-2

EXPRESSION EVALUATION

Global variables survive program invocations and logouts because they
are saved in a user defined file. This file is defined by the
DEFINE_GVAR internal command (see Chapter 4). If a user intends to use
global variables during a terminal session, he must use a DEFINE GVAR
command before the first global variable reference,

Global variables are deleted using the PRIMOS command DELETE _VAR:
DELETE VAR idl id2 ... idn

Each id is an expression which must evaluate to a variable name; these
variables are deleted.

The PRIMOS command LIST VAR {wild namel, ..., wild _nameN} lists global
variables and their values at the user's terminal. If no wildcard
names are diven, all variables are listed; if present, only those
matching the given wildcard names are listed.

Evaluation of Variables

A variable is referenced by enclosing its name in percent signs, as in
gvariable name$. An example of a statement referencing variables is:

FIN $PATHNAMEY .FIN -LIST $PATHNAMES.LIST -BIN 3PATHNAMEY.BIN -DYNM

The string $PATHNAME$ is replaced with the value of the variable
pathname. For example, if pathname has the value "HOBBIT", then the
above statement is transformed into:

FIN HOBBIT -LIST HOBBIT.LIST -BIN HOBBIT.BIN —DYNM

When a statement contains variable references, all references are
replaced by the their values before the statement is executed.
Variable evaluation is performed only once per statement. If variable
var has the value "$XXX%", then when var is evaluated the reference is
replaced by "$XXX%" and that string remains in the text, It is not
reevaluated as a variable reference.

Variable references are not evaluated inside quotes.

FUNCTIONS

Functions are procedures which return string values. These string
values are substituted for the function call in the original statement.
The maximum length of a function result is 1024 characters. A function
call is indicated by square brackets:

[function—name argl ... argn]

11-3 Second Edition

DOC4302-190

where functionname is the name of the function, and argl through argn
are its arquments. An example of a function call is:

PL1 $PL1_PROG% -L [BEFORE %PL1_PROG% .PL1].LIST

The function BEFORE will return that part of the value of PL1_PROG that
occurs before the first occurrence of ".PL1". If PL1_PROG has the
value "RICHS>EVAL.PL1", then the statement is transformed into:

PL1 RICHS>EVAL.PL1 -L RICHS>EVAL.LIST
before it is executed.

Variable references are evaluated prior to function calls; this is
illustrated by the example Jjust given; the variable reference
"$PL]_PROG%" is replaced by "RICHS>EVAL.PLL" before the call to the
function is evaluated.

Function evaluation is done recursively; any or all of function—name
or argi may themselves contain function calls. Innermost calls are
done first. There is no implementation restriction on the depth of
nesting.

Function calls are not evaluated inside quotes.

QUOTED STRINGS

CPL uses the single quote when it is necessary to quote a string. 1In
particular, quotes must be used if:

® A string contains a literal quote character, as in
'quote' 'inside'
Note that a quote is included in a string by doubling it.

@ A string contains at least one blank or comma, but is supposed
to represent one token. For example,

'a multiple token'

® A string contains at least one of the characters "[];,%", and
the literal meaning of the characters is desired. Since these

characters have meanings in CPL syntax, these meanings must be
suppressed by quotes. For example,
'hide this [function call]’

e A string contains an arithmetic operator surrounded by blanks,
and the literal meaning is desired. For example,

'not a + operator'

Second Edition 11-4

EXPRESSION EVALUATION

® A string begins with the character "-", but it is not intended
that the value represent a command control argument, as in

'-nct_a_control_argument'
Note that
SET VAR A := 'quotes go_in'
sets A to "'quotes_go_in'", i.e., the quotes are part of the value.
If two or more variable references or function calls are placed side by

side their wvalues are concatenated. Thus, suppose x has the value
"'ab'" and y has the value "'cd'". Then

Typing This Produces This
FXIIVS Tabed!
2X% 3y3 'ab' 'cd'

In the first example, the values of x and y are ooncatenated Ly
removing the their right and left quotes respectively. In the second
example, the intervening blank causes the references to be replaced
without concatenation. Similar rules hold for function calls.

CPL provides a function which will unquote strings. A call on the
function UNQUOTE has the form

[UNQUOTE string]
For example,

[UNQUOTE 'ab']
[UNQUOTE %x%]

The UNQUOTE function removes the outermost pair of quotes (if any), and
changes every pair of adjacent quotes to a single quote:

X% [unquote %x%]
ab ab

'ab' ab
l'lablll labl
Iallblll albl
Illallllblll lallbl

No other action is taken.

The QUOTE function will quote strings. A call on this function has the
form:

[QUOTE string-1 {string-2} ... |
For example,

[QUOTE abc]

11-5 Second Edition

DOC4302-190

[QUOTE %a% %b% def]
The QUOTE function adds an outer pair of quotes to its arguments. If
an arqument of the quote function already contains quotes, these quotes
will be automatically doubled to preserve the original meaning of the
string. This works for any number of quote levels. So, suppose X has
the value "ab'c¢'d", then

[QUOTE %x%] returns 'ab''c''a’
If this result were the argument of another call on QUOTE, as in

[QUOTE [QUOTE %x%]]
then the result would be

Illabllllclllldl||

The RESCAN Function

The RESCAN function may be used to force evaluation of quoted variable
references and function calls. This function strips one layer of
quotes from its argument and evaluates any function calls or variable
references which are not still quoted. To illustrate the use of this
function, suppose a CPL program test a fun has an argument
funs _and vars, which has as its value a string containing variable
references and function calls. That is, funs and vars might be
"[length %holycow%]". If we try invoking test_a fun by:

r test_a fun [length %holycows]

the call on function length and the variable reference will be
evaluated, not at all what was intended. Clearly, we must type:

r test_a fun '[length %holycowg]'

The quotes will suppress evaluation and "'[length $holycows]'" will be
assigned to funs and vars. However, when test_a_ fun wants to evaluate
the function call in funs_and vars, using just $funs _and vars$ would
give the value with its quotes, again suppressing evaluation of the
function. The rescan function must be used to strip the quotes and

evaluate the string "[length $%holycow?]". ‘Thus, test_a fun might
contain the statement:

&if [rescan %funs and varsg] > 100 &then &return

which causes test_a fun to return if the length of the value of holycow
is greater than 100.

Second Edition 11-6

EXPRESSION EVALUATION

USING ABBREVIATIONS

The &EXPAND Directive

The &EXPAND directive enables and disables statement expansion within a
CPL program. Its form is:
&EXPAND ON
OFF

&EXPAND ON causes the CPL interpreter to pass each command in the CPL
file to the abbreviation pre-processor for abbreviation expansion. The
command is passed before variable evaluation, function evaluation, and
execution, Directives are not passed to the pre-processor. Therefore,
user-def ined abbreviations cannot be used in CPL directives.

In order for expansion to work, the command
ABBREV pathname -CN

must be given either at command level or within the CPL program before
any abbreviations are used,

&EXPAND directives take effect when they are read. They are effective
only for the procedure that defines them; they do not carry over into
programs or routines invoked by that procedure,

&EXPAND OFF disables expansion. This is the default setting.

EVALUATION OF EXPRESSIONS

Evaluation at PRIMOS Command Level

When variables and functions are used interactively, the command
processor evaluates references and calls., Variable references are done
first. So, suppose the variable .SRC has the value "MY_UFD" and
variable .FILE the value "MY_PROG.FIN". The line:

FIN %.SRC%>%.FILE? -L [BEFORE %.FILE% FIN].LIST -B NO
would first have its variable references replaced:

FIN MY_UFD>MY_PROG, FFIN -L [BEFORE MY_PROG,FIN FIN].LIST -B NO

11-7 Second Edition

DOC4302-190

Functions calls are done second. Thus, the above line would be
converted to:

FIN MY_UFD>MY_PROG.FIN -L MY_PROG.LIST -B NO

before it is executed. This completes variable and function evaluation
at command level.

If abbreviation processing has been enabled by the &EXPAND ON

directive, the command line is passed to the abbreviation preprocessor
for evaluation before variables and functions are evaluated.

Evaluation Within a CPL Invocation

When variables and functions are used inside a CPL program, the CPL
interpreter evaluates references and calls. This is done because
expressions must be evaluated in CPL directives (which the command
processor does not understand) as well as in commands.

As in interactive evaluation, variable references are processed before
function calls, However, in CPL directives there is a third step: an
implicit call on the CALC function. (Chapter 12 describes CALC;
briefly, this function calculates the values of arithmetic
expressions,) CPL calls CALC on any expression in a CPL directive. If
the expression contains operators delimited by blanks which are
recognized by CALC, the operations are done; otherwise, the original
string is returned. If operators are not to be interpreted by CALC,
they must be quoted or not delimited by blanks. Thus, instead of
saying:

&IF [CALC %I% > 5] &THEN &RETURN
we can say:

&IF %1% > 5 &THEN &RETURN
The implicit call to CALC is done last, after variables and functions
have been evaluated, This implies that if infix operators are used
inside a function call, CALC must be called explicitly. For example,
suppose A has the value "5" and B the value "2". We must say

&IF %I% = [MOD [CALC %A% * $B%] %MODULUS%] &THEN &RETURN
because omitting the call on CALC would cause the string "5 * 2" to be
taken as the first argument of the MOD function. Since "5 * 2" does

not convert to an integer, an error will result (the function MOD does
not "understand" that "*" means multiplication).

Second Edition 11-8

EXPRESSION EVALUATION

All uses of arithmetic operators in PRIMDS commands must be inside an
explicit CALC invocation., For example, the command line

primos_command 1+5
represents a use of the string "1+5", while
primos_command [calc 1 + 5]
represents a use of the addition operator.
If statement expansion is in effect and the current statement is not a
CPL directive, the statement is then passed to the abbreviation

preprocessor. The string returned by the preprocessor is then passed
to the system command processor for execution,

11-9 Second Edition

12

Command Functions

THE CALC FUNCTION

Arithmetic expressions may be evaluated using the function CALC. Its
form is:

[CALC infix expression]

This function evaluates expressions containing the logical cperators &
(and), | (or), and ° (not); the arithmetic operators +, -, *, /, unary
+, and unary -; and the relational operators =, <, >, <=, >=, and "=,
The precedence is:

Highest: ~ unary + unary -
. / *
. + -
. = "= < > <K= >=
. &

Lowest: |

Parentheses may be used to alter the assigned precedence in the usual
way. Five 1levels of nesting are allowed. Unparenthesized expressions
containing operators of equal precedence are evaluated from left to
right.

12-1 Second Edition

DOC4302-190

Notes

1. All operators which are to be evaluated by CALC must be
delimited by blanks. This restriction resolves the
ambiguity which can arise from the fact that "*", "<", and
">" are also valid pathname characters.

2. If CALC is given an expression containing more operators
than it can handle, it prints the error message, "Operator
stack overflow." If you receive this message, rewrite the
calculation to break it down into simpler expressions.

Logical and relational operators return Boolean values. The strings
"TRUE", "true", "T", and "t" all represent Boolean true, while "FALSE",
"false", "F", and "f" represent false.

Arithmetic operators return a character string representation of the
numeric result, Arithmetic operators apply only to integer values;
CPL has no floating point arithmetic,

All the arithmetic operators have the usual definition, except for /
which returns only the truncated integer part of any non-integer
result, The final result is converted to a string and that string is
returned as the value of CALC.

Arithmetic, logical, and relational operators have some restrictions on
the kind of operands they accept. Arithmetic operators must have
operands which convert to integers. (Strings which convert to integers
must contain only digits, except possibly for a preceding sign and
leading and trailing blanks: the resulting value must be in the range
=2*%*31 + 1 ... 2**%31 - 1.,)

Logical operators must have operands which are Boolean. Suppose tvar
and fvar are variables whose values are "true" and ‘“false",
respectively, and four, five, and six are variables with the values
"4"' llsll' md "6ll. then

$tvary & 3fvard
(3foury < %fivey)
stvarg | ($fourg < %fives)
are all valid expressions. Bowever,
stvars | ($fourg + 3fives)
is not valid since "sfour% + %five%" is not a Boolean expression. The

value returned by CALC is "TRUE" if the logical operations result is
true, and "FALSE" otherwise.

Second Edition 12-2

(OMMAND FUNCTIONS

Relational operators accept either numeric or non—numeric operands, If
a relational operator is given a nonnumeric operand, a string
comparison will be done. If both operands are either numeric or
Boolean, an arithmetic comparison is done. Boolean true is interpreted
as "1" and false as "0".

If we used relational operators with our sample variables, the
expressions:

gfours + $fives
gsix¥ * (¥foury - $fives)

would be legal, while:

gfourg + 'i''m not_a number’
gfourt + stvars

would not.,
As in the other functions, the expression in CALC may contain function
calls and variable references. The expression left after these are

evaluated should, of oourse, be a valid logical or arithmetic
expression.

OTHER ARITHMETIC FUNCTIONS

P> [HEX hex-string]

hex-string is an expression which must evaluate to a valid hexadecimal
number. This function returns a string representation of the decimal
equivalent of hex-string. For example: [HEX A] returns "10".

P [MOD decimal-string decimal-string]

Both arguments must be expressions that evaluate to decimal numbers.
[MOD decl dec2] returns the string representation of the value of decl
modulo dec2. That is, it returns the remainder resulting from division
of decl by dec2. For example: [MOD 27 4] returns "3".

P [OCTAL octal-string]

octal-string is an expression which must evaluate to a wvalid octal
number. This function returns a string representation of the decimal
equivalent of octal-string. For example: [OCTAL 10] returns "8".

12-3 Second Edition

DOC4302-190

P [TO_HEX decimal-string]

decimal-string is an expression which must evaluate to a valid decimal
number . This function returns a string representation of the
hexadecimal equivalent of decimal-string., For example: [TO_HEX 15]
returns "F".

P> [TO OCTAL decimal-string]

decimal-string is an expression which must evaluate to a valid decimal
number, This function returns a string representation of the octal
equivalent of decimal-string. Example: [TO OCTAL 8] returns "10",

STRING FUNCTIONS

Some of the following functions will quote their results and others
will not. If the result of a function is most likely to be used as a
single token, but oontains a semicolon, comma, blank, or quote, or if
the result is an arithmetic or logical operator, the function will
quote its result. If the result is most likely to be used as a list of
multiple items, the result is not quoted. The automatic quoting is
done only if the result contains one of the delimiters mentioned, or if
it consists of an operator. Thus, the AFTER function quotes its result
since the user most likely wants to treat it as one syntactic token.
The WILD function, on the other hand, does not quote its result since
the user most likely wants to use the result as a blank separated 1list
of names rather than as a single string with embedded blanks,
Functions which always return one token, such as LENGTH, do not gquote
their results.

In the 1list that follows, an asterisk precedes the description of any
function that quotes its results.

P * [AFTER string find-string]

returns the substring of string that occurs to the right of the
leftmost occurrence of find-string in string. It returns the null

string if find-string does not occur in string or if find-string is at
the right “end of string. For example: [AFTER abc.def.x .] returns
"def .x".

P> * [BEFORE string find-string]

returns the substring of string that occurs to the left of the leftmost
occurrence of substring find-string in string. It returns string @f
find-string does not occur in string, and returns the null string if

Second Edition 12-4

COMMAND FUNCTIONS

find-string is at the left end of string. For example:

[BEFORE abc.def.x .] returns “"abc".

P> [INDEX string find-string]
returns the position of the leftmost occurrence of fmd-strmg within

string. If find-string does not occur withing string, INDEX returns
"0". For example: [INDEX abcdef de] returns "4",

P> [LENGT string]

returns the number of characters in string.

P> [NULL string]

returns "TRUE" if string is the true null string or '', and "FALSE"
otherwise.

P> [QUOTE stringl string2 string3 ...]

adds an outer pair of quotes and doubles the quotes already in strings
string{i}. This function is useful when it is necessary to suppress
the meaning of special symbols through calls to subsystems (see Chapter
11 for a discussion of quotes). Examples:

[Q[DTE XY'I'Z] returns nlxylvlllzlu
[QUOTE abc 'd e' fg] returns "'abc ''a e'' fg'"

P> [SEARCH stringl string2]
returns the index (counting from 1) of the first character in stringl
that appears in the string string2. For example: [SEARCH abc.def

<>.+] gives "4", If no character of stringl appears in string2, the
SEARCH function returns 0.

P * [SUBST stringl string2 string3]

replaces all occurrences of string2 in stringl with string3. Example:
[SUBST aabbaabbaa bb qg] returns "aaggaaggaa".

12-5 Second Edition

DOC4302-190

P> * [SUBSTR string start-pos {num-chars}]

start-pos must be numeric, and num-chars must be either omitted or
numeric. If we count positions from left to right starting at 1, then
[SUBSTR string start—pos] returns all characters in string in pgsitions
start-pos, start-postl, start-post2, etc. to the end of string. If
num—chars is present, [SUBSIR string start—pos num-chars] returns the
first numchars characters in string to the right of and including the
character in position start-pos. If start-pos and/or num-chars specify
a substring that runs off the end of string, then start-pos and/or
num-chars are reduced until the substring is proper or the null string
Tesults. FExamples:

[SUBSTR abcde 3 2] returns "cd"
[SUBSTR 'ab de' 2] returns "'b de'"

P * [TRANSLATE string {out-chars in-chars}]

returns a string computed by the rule: for each character in string,
if that character appears in the ith position in in—chars, then replace
it with the ith character in out-chars. More explicitly,

for each character in string:
if current char_in string is in the ith position in in—chars
then next_char_in result = ith character in out—chars
else next char in result = current char_in string

If both out-chars and in-chars are omitted, all lowercase letters in
string are converted to uppercase, and that result is returned. If
only in-chars is omitted, then in~chars is assumed to be the entire
ASCIT collating sequence. FExamples:

[TRANSLATE abc] returns "ABC"
[TRANSLATE ‘'abc' 123 cab] returns "'231'"
[TRANSLATE mixxpelled s x] returns "misspelled"

P> * [TRIM string {which-side} {trim~char}]

trims a leading or trailing sequence from string. If which-side and
trim-char are both omitted, leading and trailing blanks are trimmed.
which-side specifies where the trimming occurs, and may be any of
"_right™, "-left", or "-both". trim-char specifies the character to be
trimmed. If only trim-char is omitted, a blank is assumed. Example:
[TRIM bbbabcbbb -~both b] returns "abc",

Second Edition 12-6

COMMAND FUNCTIONS

P> [UNQUOTE string]

removes one.ogter pair of quotes and changes every pair of adjacent
quotes remaining to a single quote. (See discussion of quotes in
Chapter 11). For example:

[UNQUOTE '''xx''''yy'''] returns "xx''yy'.

P> [VERIFY stringl string?]

returns the index (counting from 1) of the first character in stringl
that DOES NOT appear in the string string2, For example: [VERIFY
1298s8 0123456789] gives "5". The VERIFY function returns 0 if all
characters in stringl appear in string2.

FILE SYSTEM FUNCTIONS

-TYPE
P> [ATTRIB path {-DMM {-BRIEF}]
-LENGTH

This function returns information about the file specified by path.
Exactly one of the options -TYPE, -LENGTH, or -DTM, must be given on
each call. The -TYPE option causes the function to return the type of
the file path: "SAM", "DAM", "SEGSAM", "SBEGDAM", "UFD", "ACAT", or
"UNKNOWN". The -DIM option returhs the date/time modified information
on the file in the format produced by [DATE -FULL]. The —-LENGTH (-LEN)
option returns the length of the file in words,

The -BRIEF option, if used, suppresses the printing of messages Ly
ATTRIB.

P * [DIR path {-BRIEF}]

returns the directory portion of the pathname path., For example: [DIR
smith>x>y] returns "smith>x". "*" (representing the home directory) is
returned if the pathname is a simple filename,

The -BRIEF option, if used, suppresses the printing of messages by the
-DIR function.

P> [ENTRYNAME path]
returns the entryname portion of the pathname path. Example:

[ENTRYNAME smith>x>y] returns "y".

12-7 Second Edition

19.0

|19.o

]19.0

119.0

19.0

19.0|

19.0

DOC4302-190

P> [EXISTS path {type} {-BRIEF}]

returns "TRUE" if there exists a file system object with pathname path
of type type, and "FALSE" if not. If type is -ANY, any type of object
will suffice. type may also be -FILE, -DIRECTORY, -DIR,
-SEGMENT DIRECTORY, -SEGDIR, ACCESS CATEGORY, or ACAT, to check for the
existence of an object of that type. The default type is —-ANY.

The -BRIEF option can be used to suppress the printing of messages by
the EXISTS function,

P> [GVPATH]

returns the pathname of your active global variable file. GVPATH
returns -OFF if you have no global variable file defined or active.

D> [OPEN FILE pathname —-MODE m status-var]

This function is useful when a user wants to open a file for
reading/writing without having to specify a unit number as in the
PRIMOS open command. The file specified by pathname is opened on some
available unit; the unit number is returned as the value of the
function. The mode indicates whether the file is to be opened for
reading only (m = "r" or "R"), writing only (m = "w" or "W"), or
reading and writing (m = "wr" or "WR", position independent). The
variable whose name is status-var is set to "0" if the operation is
successful and 1is nonzero otherwise; status var may be local or
aglobal.

For example, a call on OPEN_FILE might be:
&S READ UNIT := [OPEN_FILE ALPHA -MODE R OK]

In this example, the file named ALPHA will be opened, and the number of
the unit returned as the value of the variable READ UNIT. The variable
OK will be set to 0 if the file opening is successful. It will be set
to a non-zero value if the file opening is not successful. (Because
the value of OK is being set, not referenced, by the function call, no
percent signs surround the variable name.)

Second Edition 12-8

COMMAND FUNCTIONS

P> [PATHNAME rel-path {-BRIEF}]

returns the full pathname given the relative pathname rel-path. Note
that [DIR [PATHNAME x]] returns the pathname of the home directory.

The pathname function works correctly whether or not the rightmost
component of rel-path exists. But it produces an error if any other
directory in rel-path does not exist. For example:

[PATHNAME *>FOO>BAR]

returns a full pathname whether BAR exists or not, but produces an
error if FOO does not exist.

The -BRIEF option can be used to suppress the printing of messages by
the PATHNAME function.

P> * [READ FILE unit status-var {-BRIEF}]

This function reads a record from the file open on unit (a decimal
integer) and returns the quoted value of that record as its value (that
is, the text read replaces the function call in the CPL program text).
The variable status-var is set to "0" if the operation is successful
and nonzero otherwise. (It is set to "1" when End of File is reached.)

The -BRIEF option may be used to suppress any messages READ FILE might
print., For example, & call on READ FILE, following the opening of the
file shown in the example above, might be:

& LINE := [READ FILE $READ UNIT% OK]

When this function call is evaluated, a line is read from the £file
previously opened on UNIT $%READ unit%. The 1line of text is then
returned as the value of the variable LINE. The variable OK is set to
0 if the read is successful, to 1 if End of File has been reached, or
to some other non-zero value if an error has occurred. Again, since
the value of OK is being set each time the function call is evaluated,
the variable name is not placed inside percent signs.

P [WID wild-path wild-2 ... wild-n {control} {-BRIEF}]

produces a blank-separated list of entrynames representing the file
system objects that match the specifications of wild-path, wild-i and
control., wild-path specifies the directory to consider, and the first
wildcard name. The wild—-i specify additional wildcard names (these may
not be pathnames). control specifies DIM or type restrictions:
-BEFORE date, —BF date, —-AFTEFR date, —-AF date, -FILE, -FL, -DIRECTORY,
-DIR, —SEGMENT_DIRECTORY, -SEGDIR, —ACCESS_CATEGORY, —ACAT.

12-9 Second Edition

19.0

19.0

l19.0

19.0

|19.0

19.0

19.0

DOC4302-190

Example: [WILD @.pll @.ftn -fl] might produce the list "a.pll b.pll
foo.ftn bar.ftn z.pll".

It is easy for a call on wild to produce a result longer than the 1024
character maximum. The -single (-sgl) option causes wild to return
matching names one at a time, rather than in one long string. This
option takes a variable name as an argument; for example

[WILD london>@.pll —single unit-var]

unit-var must be initialized to zero by the user before calling wild to
get the first name, When wild is called with the -single option and
the value of unit-var is zero, wild opens the specifed directory on an
available unit, sets unit-var to the (decimal) number of that unit, and
returns the first matching name as its value. Subsequent calls will
read the directory open on the unit, and return the remaining matching
names one at a time. When no more matching names are found, the true
null string is returned and the directory closed. The user must not
modify the value of unit-var between calls on wild for the same
directory.

The —-SINGLE option is especially useful with the &ITEMS directive of
the &DO statement (See Chapter 9 for a discussion of the &ITEMS
directive and an example of the -SINGLE option).

The -BRIEF option, if used, suppresses any messages from the WILD
function.

P> [WRITE FILE unit text]

This is the inverse of the read file function. The text is stripped of
one layer of quotes and written on the file open on unit (a decimal
integer). The function returns "0" if the operation is successful and
nonzero otherwise.

Note

CPL uses decimal numbers to refer to file units, not octal
numbers, If you open a file by saying:

&SET_VAR A := [OPEN_FILE THISFILE -MODE R STATUS]
you should close it in one of the following three ways:

CLOSE THISFILE

CLOSE -UNIT %A%

CLOSE [TO_OCTAL %A%]

Do not say simply, "CLOSE %$A%"; this syntax assumes that A is
an octal value and therefore does not work.

Second Edition 12-10

COMMAND FUNCTIONS

MISCELLANEQUS FUNCTIONS

D> [ABBREV —EXPAND text]

expands text (if text is in fact an abbreviation and if you have an
abbreviation file active), and returns the expanded string as its
result, It does NOT requote the result.

If text is not an abbreviation, text itself is returned. If no
abbreviation file is active, an error is reported.

P> [CND_INFO control-flag]

This function allows a condition handler to examine the condition
information of the most recent condition on the stack. The function
returns different information depending on the setting of control-flag.
If control-flag is "-name", the name of the condition is returned. For
"-continue switch", "-cont_sw" the Boolean value of the
continue-to-signal switch is returned. For "—return permit",
"-ret_pmt" the Boolean value of the return-permitted switch is
returned, If no condition frame is on the stack, -name returns
"SNONES", and —continue_sw and -return permit both return "FALSE". The
severity code is set to warning in this case. (For information on
conditions and on Prime's Condition Mechanism, see the Subroutines
Reference Guide.)

P * [DATE {format}]

returns the current date/time in a variety of formats. If format is
omitted, the date only is returned: 81-10-21. The other possibilities
are:

-FULL 81-10-21.13:24:48.Tue

-Usa 10/21/81

-UFULL 10/21/81.13:24:48.Tue
—VFULL 27 Apr 82 10:54:32 Tuesday

-DAY 21

-WONTH October
-YEARR 1981
VIS 27 Apr 82

-TIME 13.24.48
-AMPM 1:24 pPM

—DOW Tuesday
-CAL October 21, 1981
-TAG 811021

-FTAG 811021.132448

12-11 Second Edition

19.0

|19.0

|19.0

|19.0

19.0

19.0]

19.0

19.0}

DOC4302-190

P> [GET_VAR expr]

expr must evaluate to a valid variable name. GEL_VAR returns the value
of that variable if the variable has been defined, or the string
"SUNDEFINEDS" if it is undefined. GET VAR also returns SUNDEFINEDS if
no global variable file is defined or active. This function can be
used to test if a variable has been set. Example: [GET_VAR
undefined var] returns "“SUNDEFINEDS", assuming undefined var is indeed
undef ined.

GET_VAR can also be used to get the value of a variable whose name i€
computed at runtime. This is useful for simulating indexing and
indirection. Example: [GET_VAR a%i%] returns the value of variable al
if i has the value "1".

P> [QUERY text {default} {-TTY}]

prints text on the user's terminal output stream, following it with a
question mark. Printing is suppressed if text is null. The command
input stream will be read for the user's reply, which must be "yes",
"y", "0ok", "no", "n" or null (case—insensitive). Null input causes the
default to be returned; if the default is not specified, it is taken
to be "FALSE". Otherwise, the function returns "TRUE" if the answer
was "yes", and "FALSE" if it was "nc". If text and default contain
embedded blanks, they must be enclosed in quotes.

The -TTY option forces the QUERY function to go the terminal for input,
no matter where the command stream that invoked it originated. Without
this option, the function takes input from whatever ocommand stream
invoked the command line or CPL program containing it, whether that is
a user at a terminal, a &DATA group within a CPL program, or a COMINPUT
file,

P> [RESCAN string]

returns the result of stripping one level of quotes from string and
evaluating any function calls or variable references no longer
appearing in quotes, Example: [RESCAN '[BEFORE ''[do not eval
this]xxx'' x]'] returns "[do not eval this]".

P> * [RESFONSE text {default} {-TIY}]

prints text on the user's terminal output stream, following it with a
colon, Printing is suppressed if text is null. The command input
stream will be read for the user's reply, which is returned (possibly
quoted) as the value of the function. If a null reply is entered, the
default is returned. If default is omitted, it is taken to be the null
string, If text and default have embedded blanks, they must be quoted.

Second Edition 12-12

QOMMAND FUNCTIONS

The -TTY option forces the RESPONSE function to go the terminal for
input, no matter where the command stream that invoked it originated.
Without this option, the function takes input from whatever command
stream invoked the command line or CPL program containing it, whether
that is a user at a terminal, a &DATA group within a CPL program, or a
COMINPUT file.

12-13 Second Edition

19.0

Arguments

INTRODUCTION

This chapter provides a full reference for the use of arguments in CPL.
It discusses the format and use of:

e Object argquments (that is, positional arguments)

e Option arguments

e Two special argument types, REST and UNCL

THE &ARGS DIRECTIVE

Syntax: &ARGS {name{:{type}{=default} }...}~
{name: -option_list{ name{:{type}{=default} };...} }

Examples: &ARGS TRUTH; BEAUTY; CHARM
&ARGS TRUTH:DEC; BEAUTY :TREE=A UFD>FILE; CHARM:CHAR

&ARGS CHARM:CHAR; TR_FLAG:-TR TRUTH:DEC;”
BE _FLAG:-BE BEAUTY :TREE=A UFD>FILE

13-1 Second Edition

DOC4302-190

CPL provides a powerful argument specification and validation facility.
The &ARGS directive defines a "picture" of the command line that will
be used to invoke this CPL procedure and declares local variables whose
values will be those of the actual arguments. If the command line
typed does not match the picture, a diagnostic is printed and the
severity code set to error (see Chapter 15).

Object arguments are positional; that is, they must appear on the
command line in the same order as they appear in the &ARGS directive.
To allow position independence on the command line, the user may define
option arguments which flag the presence of specific arguments. In
addition, a user may define arguments to be of a particular type, such
as "tree" or "ptr", and have the &ARGS directive verify that the
arguments supplied on the command line match the declared types.
Finally, default values may be defined for arguments; these values are
assigned to the arguments if they are amitted from the command line.
All these features are discussed in detail in the following chapter.

An &RGS directive may appear anywhere in a CPL procedure; the
arguments on the command line are processed when the &ARGS directive is
encountered, A procedure may have more than one &ARGS directive, If
more than one &ARGS directive is executed, the same command line is
parsed each time.

OBJECT ARGUMENTS

All object arquments are positional; they must appear on the command
line in the same order as they appear in the &ARGS statement, For
example, suppose CPL program X.CPL is to have three argquments. We
might include a statement like this:

&ARGS SQURCE; DEST; NOLINES
If this program is invoked by the command line:

RXABC

then the variable source has the value "A", dest the value "B", and
nolines the the value "C". Note that in this simple case, lower case
is mapped. to upper case. An error occurs if the user gives too many
object arquments. In the above example, typing:

RXABCD

would cause the message "Too many object arguments specified. D (cpl)"”
to be printed. If too few argquments are given, the omitted ones are
assigned the system default value according to their type, as shown in
Table 13-1.

Second Edition 13-2

ARGUMENTS

SPECIFYING TYPES

The user can specify types for his arguments, by adding ":type" after
the argqument name. (If ":type" is omitted, the type defaults to
"char".) Specifying a type restricts the form of the string which the
&ARGS directive will accept as a value of the arguments. CPL will
check that the type of the actual argument is the same as the declared
type of the formal argument, A diagnostic is produced if a faulty
arqument is found, and an error severity code produced.

Arguments are just variables and their values may be altered just 1like
other variables; the type is not checked if an argument is assigned a
value using the SET VAR command or the &SET VAR directive.

The types supported, and their system default wvalues, are shown in
Table 13-1.

So, in the example above we might say:
&ARGS SQURCE:TREE; DEST:TREE; NOLINES:DEC
A valid call would be:

R X RICHS>EVAL.PL1 MY_SOURCE 50

HOW NULL STRINGS ARE HANDLED

The standard command processor will remove all occurences of the
explicit null string from a command line before executing it. This
allows a user to use omitted arguments on PRIMOS command lines without
an error, For example, assume that a user defines an argument
ftn args:

&ARGS OTHER _ARGS:CHAR; FIN_ARGS:REST
and that ftn args is going to be used in this line:

FIN $CURRENT_FILE? $FIN_ARGS%
If the user has echoing enabled and omits FIN_ARGS from his invocation
of the CPL program (in order to get the default compiler options), he
will see this echoed at his terminal:

FIN value of current file ''
The '' indicates that ftn_args has been omitted and was assigned the

system default value; the command processor will remove the '' before
executing the command,

13-3 Second Edition

DOC4302-190

Table 13-1
Argument Types Supported in CPL

Type Default Description

char ' Any character string up to 1024 characters long,
mapped to upper case

charl v Any character string up to 1024 characters long,
no case shifting

tree ' A PRIMOS pathname up to 128 characters long

dec 0 Decimal integer

oct 0 Octal integer

hex 0 Hexadecimal integer

entry ' File entryname up to 32 characters long

ptr 7777/0 Virtual address in format "octal/octal"

date " Calendar date in the form "mm/dd/yy hh:mm:ss day"
rest " The remainder of the command line
uncl " All tokens not acoounted for by the &ARGS picture

Second Edition 13-4

ARGUMENTS

ARGUMENT DEFAULTS

Users may specify a default value for each argument to override the
system default values. If the argument is omitted in the command line
used to invoke the program, the default value 1is assigned to it.
Defaults are specified by typing "=default" after the declared type, or
after the colon if type is omitted; the type is taken to be char in
that case. Continuing our example, we might declare defaults like
this:

&ARGS SQURCE:TREE; DEST:TREE=MY_ UFD>MY_SQURCE.PL1; NOLINES:DEC=100
Typing:
R X RICHS>EVAL.PL1

would assign “RICHS>EVAL.PL1" to source and the default values
"MY_UFD>MY_SOURCE.PL1" and "100" to dest and nolines respectively.

Default values may contain local variable references. For example,
suppose the local variable standard ufd has the value "LAURELD>DHARDY",
then the &ARGS directive:

&ARGS COMPILE_UFD:CHAR=%STANDARD UFD%
would be transformed to:
&ARGS COMPILE UFD:CHAR=LAUREL >HARDY

and "laurel>hardy" would be assigned to compile ufd if no value is
supplied on the command line. Variable references used in default may
be references to other arguments in the same &ARGS directive. So, we
could say:

&ARGS COMPILE UFD:CHAR=%STANDARD UFD% ; OBJ_UFD:CHAR=%COMPILE_UFD%

which uses the value assigned to argument compile ufd as the default
value of argument obj_ufd; that is, if no value is typed in for
obj_ufd on the command line, it defaults to be the same ufd as
compile ufd. This construction is possible because the &ARGS directive
is interpreted first, and default wvalues assigned second. Thus, if
references to other arqument varizbles are used in default, the wvalue
used as the default is the value assigned to that variable after the
&BRGS directive has been interpreted.

Suppose a CPL program contains the statements:

&SET VAR ARG_VAR := ZYMURGY
&ARGS OTHER_ARG:CHAR=%ARG_VAR%; ARG_VAR:CHAR

13-5 Second Edition

DOC4302-190

The first of these two statements has no effect whatever. Since the
&ARGS directive 1is interpreted before the default values are assigned,
the value used as the default of other_arg is whatever value was given
to arg var in the command line, not the string "zymurgy". Circular
references like:

&ARGS OTHER_ARG:CHAR=%ARG_VAR%; ARG _VAR:CHAR=%0THER ARG%

are not permitted and give undefined results,

OPTION ARGUMENTS

Option arguments may be used to make some or all of the arguments order
independent. They are used to identify a particular argument or group
of arguments, or to select a specific program option; they are similar
to option arguments used in standard PRIMOS command lines. For
example, in:

FIN A PROG,FIN -LISTING A_PROG.LIST -BINARY A _PROG.BIN -DEBUG

-listing and -binary are option arquments which identify the names of
the listing and object files, respectively; -debug is an option
argument which selects a compiler option. Option argument names must
begin with a hyphen; the rest of the name may contain any character
which is not a delimiter in the &ARGS directive (blank, comma,
semicolon, colon, equal sign). For example, -listing, —no binary.

Note

Names of option arguments must contain at least one alphabetic
character. Numeric names for option arguments (e.q., -123) are
illegal, as they may be mistaken for negative integers.

An important restriction to remember is that in the &ARGS directive any
object arguments (that is, positional arguments) must precede any
option arguments used. This restriction does not apply to the command
line being parsed.

Switches

The simplest option argument is a switch that is either present on the
command line or not, A switch is used to select a specific program
option (the —debug option in the ftn invocation above is an example of
a switch). A switch is declared by:

&ARGS flag-var:name-list

Second Edition 13-6

ARGUMENTS

name-list is a list of one or more cption argument names separated by
commas., The additional names are commonly used to provide short
synonyms, as in:

&ARGS LIST SW:-LISTING, -L

flag-var is the name of a lccal variable which will be set to the first
name in the name-list of the option argument if any of the names in
name-list appear on the command line. It will be set to the null
string 'Y if none of the names appear. In the above example, if
"-listing"” or "-1" appears on the oommand line, list sw is set to
"-LISTING"; it is set to '' if neither appears.

Flags

The definition of an option argument may specify one or more arguments
that will follow the option arqument on the command line. In this
case, the option argument acts as a flag which signals the presence of
the argument group on the command line. Since the flag identifies the
group, the group's position on the command line is independent of the
position of its declaration in the ocorresponding &ARGS directive.
Within a group flagged by one option argument, however, the arguments
are position dependent. So, a program compile and go might have the
‘statement:

&ARGS LIST _SW: -LISTING, -L LIST FILE:TREE;"
EXEC_SW: -EXECUTE, -E OBJ_FILE:TREE; LIBRARY:CHAR

This statement declares three arguments: a listing file "list_file",
which is flagged by either "-listing" or "-1"; and a binary file
"obj_file" and a library-name "library", both of which are flagged by
either "-execute" or “"-e". Valid calls on compile_and go are:

R COMPILE_AND GO ~EXECUTE RICHS>NEW_OBJ PLPLIB -L RICHS>NEW_LIST
R COMPILE_AND GO —L RICH>NEW_LIST —-E RICES>NEW_OBJ PLPLIB

While list_file and the pair of arguments obj_file and library may be
first or last on the command line, obj_file and library must appear in
that order after their flag. As in a simple switch, flag var is set to
the first name in name_list if the ocontrol argument appears on the
command line.

Continuing our example with program X, we might now say:
&ARGS ORIG_FILE:-SOURCE,-S SQURCE:TREE;”~
DEST_FILE:-DEST,-D DEST:TREE=MY_UFD>MY_ SCURCE.PL1;"™
LINES :-LINES,-L NOL INES : DEC=100
Notice the power of this brief statement. We have defined three

arguments: source, dest, and nolines, source must be a pathname; the
actual argument on the command line corresponding to source is flagged

13-7 Second Edition

DOC4302-190

by being preceded by either "-source" or "-s". dest must also be a
pathname; the actual argqument is flagged by either "-dest" or "-d",
and defaults to "my_ufd>my_source.pll". nolines must be a decimal
integer, is flagged by "-lines" or "-1", and will be assigned the value
"100" if it is omitted. In addition, the variable orig file is
assigned "~SOURCE" if that arqument is present; similarly, dest_file
is assigned "-DEST" and lines assigned "-LINES", if those arguments are
present., A call on program X might now look like:

R X -D HIS_UFD>HIS_SQURCE —S RICHS>EVAL.PL1
Another example:

&ARGS SOURCE:TREE; LIST FLAG:-LIST,-L LIST FILE: TREE;~
FROM:-FROM FROM_S: DEC = 1 FROM_E: DEC=9999

The command:
R X MYFILE -FROM 6 -L MYFILE.LIST

results in the values:

$SQURCE® = "MYFILE"
$LIST FLAG% = "-LIST"
$LIST FILE® = "MYFILE,LIST"
$FROMS = "—FROM"
$FROM_S% = "g"

$FROM_E% = "9G99"

REST AND UNCL DATA TYPES

The rest and uncl types are useful when the user wants CPL to interpret
some arguments and take whatever else is on the ocommand line (after
variable references and function calls have been evaluated) as is.
Consider the following CPL procedure, run_ftn,cpl:

&ARGS FIN_ARGS:REST
FIN MUMBLE %$FTN_ARGS%
typing:
r run_ftn -list steveco>mumble.list

assigns "-list stevec>mumble,list" to ftn args. Nocte that no case
mapping occurs for a rest type argument,

Second Edition 13-8

ARGUMENTS

Another example:

&ARGS DIR:TREE; DEEP:-DEPTH; LIM F:-LIMIT,-LIM LIM V:DEC;~
CL_F:-COM LINE,-CL. CL_V:REST

when given the command line:
command -LIM 50 ABC>DEF -DEPTH -CL LS —-SORT DIM -LONG

causes dir to be set to "ABCO>DEF", deep to "-DEPTH", lim f to "-LIMIT",
lim v to "50", cl_f to "-COM_LINE", and cl_v to "LS -SORT DIM -LONG".

The parsing of the command line stops when a rest type argument is
encountered in the picture; whatever remains on the command line is
assigned to the rest argument. This means that only one rest type
arqument may appear among the object arguments, and it should be the
rightmost of these; if there are no rest type object arguments, one or
more option arguments may have a rest type as the rightmost of their
positional arguments. Furthermore, all characters that are to be
assigned to a rest argument must appear last in the command line; some
order dependence has been introduced.

An uncl argument in the &ARGS picture does not stop the parsing of the
command line. The parsing continues, and any tokens not assigned to an
argument when the parse ends are concatenated and assigned to the uncl
argument rather than causing an error. If an option argument that is
not in the &ARGS picture is encountered, all arguments between it and
the next option argument or the end of line are assumed to belong to
the first option argument. For example:

&ARGS UNCLAIMED:UNCL; FNL:-FUNNY LIST,-FYL
when given the command line:

command source -b source.bin —-dynm —-funny_list -limit 26
causes variable fnl to be set to "-funny_list", and variable unclaimed
to be set to "source -b source.bin -dynm -limit 26". Note that no case
mapping occurs for arguments of type uncl.
Caution should be used when arguments are declared to be type uncl.
The uncl type does not ensure order independence. Suppose run_ftn were

to take two arguments, ftn args and another_arg, and we use this &ARGS
directive:

&ARGS ANOTHER ARG:OCTAL; FIN_ARGS:UNCL

13-9 Second Edition

DOC4302-190

Typing:
r ftn args 777 -list stevec>mumble,list

assigns "777" to another_arg and "-list stevec>mumble,list" to
ftn args. However,

r ftn args -list stevec>mumble.list 777

assigns "-list stevec>mumble.list 777" to ftn args (since everything
between an undeclared option argument and the next option argument, or
the end of the line, is assigned to the uncl argument), and "0" to

another_arg (the default for numeric types which are amitted from the
command line),

Only one instance of the uncl type may appear in an &ARGS directive.
An argument flagged by a option argument may not have type uncl.

Second Edition 13-10

Writing
Subroutines and
Functions in CPL

INTRODUCTION

CPL programs may contain internal "routines". These are equivalent to
subroutines or internal procedures in high-level languages. The first
part of this chapter explains the oconstruction, invocation and
execution of CPL routines. Chapter 15 explains how to use routines for
error handling and condition handling.

CPL programs may also contain user—defined functions. The last part of
this chapter explains how to write and invoke functions.

A Note on Terminology

In PL/I, any program or subroutine is called a procedure. A program is
an external procedure. The subroutines it contains are internal
procedures., And the main program, minus its subroutines, is the main
procedure, This terminology is diagrammed below.

14-1 Second Edition

DOC4302-190

\
&ARGS WHAT
. .
&CALL A MAIN PROCEDURE
° z
&RETURN h EXTERNAL. PROCEDURE
SROUTINE A
. b INTERNAL, PROCEDURE
&RETURN
J/

In this guide, we use the term routine when we refer to a CPL. routine.
(For example, we say that every routine begins with a &ROUTINE
directive.) We use the term procedure when we refer to a
main-or—internal-or-external procedure. (For example, we say that a
&RETURN directive causes a procedure to return to its caller, This
statement is equally true for internal and external procedures.)

WRITING ROUTINES

Routines in CPL are intended primarily for error handling and condition
handling, However, they may be used for any purpose for which
subroutines are used in high-level languages. For example:

e A routine might replace a lengthy &DO group following a &THEN,
&ELSE, or &WHEN. The routine call itself would then be the
argument of the &THEN, &ELSE, or &WHEN directive (for example,
&THEN &CALL RQUTINE_A).

e A routine may be used when one operation must be performed
several times during the course of a program. The routine can
thus be written once, and calls to the routine placed at all the
points where the routine is needed.

How Routines Operate

Routines in CPL operate under the following rules:
e They begin with the directive:

SROUTINE routine label

Second Edition 14-2

SUBRCUTINES AND FUNCTIONS

e They are invoked with the directive:
&CALL routine_label
For example:

&CALL STARTUP

.

&RO(BTINE STARTUP
e They may be invoked only by the CPL file within which they exist
e They are ended by either:
-— A &RETURN directive
— A &STOP directive

-- A nonlocal &GOTO (that is, a &OTO to a label that is
defined outside the routine containing the &GOTO)

e They are physically terminated by:

— The presence of another &ROUTINE directive (signalling
the start of another routine)

— The end of the CPL file

e They use whatever variables the main CPL procedure has defined.
They do NOT create their own copies of these variables. Rather,
they act directly on the main procedure's copy. Thus if a CPL
program contained the following code:

&S NUMBER := 10

&CALL DOUBLE

TYPE ¥NUMBER%

&RETURN

&ROUTINE DOUBLE

&SET_VAR NUMBER := $NUMBER% * 2
&RETURN

then the program, when invoked, would type the number 20.

e They have their own &DEBUG, &SEVERITY, &CHECK and &EXPAND
settings. If a routine does not set these directives
explicitly, then the directives are set to their default values
when the routine is entered.

When control returns to the main procedure, the directive values
are re-set to whatever values were set by the main procedure.

14-3 Second Edition

DOC4302-190

Placement of Routines

Routines cease executing when they meet a &RETURN or a &STOP directive.
However, they do not physically end until they encounter another
&ROUTINE directive (signalling the start of the next routine), or the
physical end of the CPL file,

A CPL program must not encounter a &ROUTINE directive during normal
execution. Routines may be entered only:

e By the &CALL directive

® By execution of the error-handling directives, &N, &CHECK, or
SHANDLER

If a CPL program does encounter a &ROUTINE directive during normal
execution, execution terminates with an error message.

The best place to put CPL routines, therefore, is at the end of the CPL
file, following the main procedure, For example:

/* main routine begins here

&CALL ROUTINE_1
&CALL ROUTINE_2

*

SRETURN /* end of main program

&ROUTINE ROUTINE 1 /* begin first routine
&RETURN /* first routine ends

&ROUTINE ROUTINE_2 /* begin second routine
SRETURN /* second routine ends

Second Edition 14-4

SUBRQUTINES AND FUNCTIONS

It is possible to place a routine in the middle of a CPL file. If you
do so, however, your program must &GOTO around the routine. For
example:

§GOTO SKIP_ROUTINE
&ROUTINE (QUT_OF_PLACE

&RETURN
&LABEL SKIP_ ROUTINE

This is neither readable nor efficient code. We do not recommend its
use.

Note

You may leave a routine and enter your main program via a
&GOTO, but you may not enter a routine via a &OTO from the
main procedure. Entering a routine via a &GOTO causes an
error, and terminates execution of the CPL program.

Nesting Routines

Internal procedures may call other internal procedures. An example of
this would be:

&CALL B
&RETURN
&ROUTINE B

SRETURN

14-5 Second Edition

DOC4302-190

Ending Routines: The &RETURN and &STOP Directives

There are two ways in which you may want to terminate subroutines:

e If the routine performs correctly, you usually want it to return
control to the main CPL program, so that that program can

continue its execution. This is performed by the &RETURN
directive,

e If the routine fails, or if the routine was called because an
error occurred in the main program, you may want the routine to
abort execution of the main program and return ocontrol to the
main program's caller. This is done with the &STOP directive.

The &STOP Directive: The &STOP directive has the same format as the
&RETURN directive, This is shown in Table 14-1,.

If the &STOP directive is used in a main procedure, it acts just like
the &RETURN directive. However, if the &STOP directive is used in an
internal routine, it halts execution of the entire CPL program, and
returns control to the program's caller. Here is a trivial example
that shows the &STOP and &RETURN directives used in a routine:

&ARGS A
&CALL CHECKUP
TYPE A = %A%
&RETURN
&ROUTINE CHECKUP
&IF %A% < 20 &THEN &RETURN &MESSAGE Arg A acceptable
&ELSE &STOP &MESSAGE Argument A too large,

If the value of A in this example 1is less than 20, the &RETURN
directive prints the message "Arg A acceptable", The TYPE command then
prints the value of A.

If the value of A is greater than 20, the &STOP directive prints the
message "Arqument A too large". The &STOP directive also halts
execution of the main CPL program. Therefore, the TYPE command is not
executed, Instead, ocontrol returns to the main program's "caller":
that is, either the user (if the user had invoked the stopped program)
or whatever CPL program had invoked the program and passed argument A
to it.

Second Edition 14-6

SUBROUTINES AND FUNCTIONS

Table 14-1
Forms of the &RETURN and &STOP Directives

Directive Action
&RETURN Halts execution of procedure in
which it occurs. Returns

control to procedure's caller.

&STOP Halts execution of procedure in
which it occurs. If this
procedure is a routine, &STOP
also halts execution of the
program containing the routine
and of any other routines that
program may have active,
Control returns to the main
program's caller.

S&RETURN &MESSAGE text Halts execution, as above.

&STOP &MESSAGE text Prints text on user's terminal
(and writes it into command
output files) when control
returns.

&RETURN severity {&MESSAGE text} Halts execution, as above.

&STOP severity {&MESSAGE text} Returns severity code to
caller, If &MESSAGE directive
is included, prints text at
terminal and writes it into
command output files,

14-7 Second Edition

DOC4302-190

WRITING FUNCTIONS IN CPL

Users may define their own functions by writing a CPL program and
invoking it wvia a function call. The format of such a function call
is:

[RESUME program-name arg-list]

When a CPL program encounters such a function call, it executes program
program—name, passing it the arquments in arg-list.

A program invoked as a function must contain a &RESULT directive. Its
format is:

&RESULT expression

expression is evaluated and returned as the value of the function,
replacing the function call in the text of the calling program.

An Example
Here is a trivial program named DOUBLE.CPL:
&ARGS X: dec
SRESULT %X% * 2
&RETURN
DOUBLE could be invoked by the following statement:
& A := [RESUME DOUBLE 5]
DOUBLE would take the integer "5" as its argument, double it, and

return the integer "10". Variable A (in the calling program) would
then be set to the value "10".

Using the &RESULT Directive

A CPL procedure may have more than one &RESULT directive; the last one
encountered before the procedure executes a &RETURN or &TOP directive
will be the function's value. If no &RESULT directive is executed, the
value of the function is the null string, ''.

If a CPL procedure is not invoked as a function (that is, if the

invocation is not enclosed within function call brackets) executing a
&RESULT directive is an error.

Second Edition 14-8

Error and Condition

Handling in CPL

INTRODUCTION

This chapter discusses:
e Error handling in CPL

e How CPL programs and routines can pass severity codes to each
other

e Condition handling in CPL

® The use of routines for error-handling in CPL

ERROR HANDL ING

Each executed PRIMDS command produces an error code known as a severity
code. Severity codes may take one of three values, as shown in the
table below, After a PRIMDS command is executed, the severity code it
produces is available in the system—defined local variable, SEVERITYS.

Code Meaning

0 No error
Positive integer Error

Negative integer Warning

15-1 Second Edition

DOC4302-190

Note

The user should never define SEVERITYS as a variable himself.
Doing so will interfere with CPL's ability to handle errors.

How CPL Handles Errors

When a CPL program is executing, the CPL interpreter checks the value
of SEVERITY$S following the execution of each PRIMOS command (and
following the execution of the &ARGS directive, as well), If SEVERITYS
has a value greater than zero, and the CPL program has not defined its
own error-handling parameters, the CPL interpreter terminates execution
of the CPL program.

How CPL Programs Can Handle Errors

CPL programs can define their own error-handling in four ways:

e They can use the &SEVERITY directive to modify the CPL
interpreter's response to severity codes

e They can use the &CHECK directive to define their own error
conditions

e They can use the &ROUTINE directive (in connection with either
the &CHECK or the &SEVERITY directive) to define error—handling
subroutines

@ They can test the value of SEVERITYS at some specific point in
the program by using an IF statement (for example, "&IF
$SEVERITYSE > 0 ...")

&SEVERITY handling takes precedence over &CHECK handling. If the
execution of a PRIMOS command activates both a &SEVERITY handler and a
&CHECK handler, the &SEVERITY handler is invoked first. If the
&SEVERITY handler returns (that is, if it does not execute a &STOP
directive or a &OTO), the &CHECK handler is executed,

The operation of the &SEVERITY directive and the &CHECK directive are
explained below.

Second Edition 15-2

ERROR AND CONDITION HANDLING

P> &SEVERITY - SPECIFY SEVERITY HANDLING
Syntax: &SEVERITY {level action}
where level is any of:

&ERROR
SWARNING

and action is any of:

&PFATLL
&IGNORE
S&ROUTINE handler_label

Example: &SEVERITY &ERROR &ROUTINE ERROR_HAPPENED

This directive is provided as a convenience, since checking the value
of SEVERITYS and taking corrective action accordingly is expected to be
a common operation. The statement is a shorthand for a &CHECK
statement which checks the value of SEVERITYS.

The action clause specifies what is to be done if a severity code as
bad as or worse than level is ever produced. If action 1is &FAIL,
execution is terminated, and a positive severity code is returned to
the caller of this CPL procedure. If action is &IGNORE, execution
continues. If action is "&ROUTINE handler_label", CPL will invoke
that error-handling routine. (Handlers are discussed under CONDITION
HANDLING, later in this chapter.) handler_label must evaluate to a
routine label.

If specified, level must be &ERROR or S&WARNING. If level is omitted,
action also must be amitted. Automatic severity handling is then
disabled. Hence, typing just &SEVERITY is equivalent to &SEVERITY
SWARNING &IGNORE: in other words, ignore all errors.

If the handler ends normally or executes a &RETURN statement, control
passes to the statement following the one that caused the handler to be
invoked. The only exception to this is the case when a &CHECK handler
has been declared and the check expression evaluates to "TRUE". 1In
this case, the check handler will be invoked after the &SEVERITY
handler returns (if it does return), and before control returns to the
next statement in the sequence.

15-3 Second Edition

DOC4302-190

’ &CHECK — INVOKE A HANDLER IF A GIVEN EXPRESSION IS TRUE
Syntax: &CHECK expression &ROUTINE handler
Example: &CHECK $THIS VAR% > $THAT VAR% &ROUTINE DISASTER

After each PRIMOS command is executed the expression expression is
evaluated. If the expression is true, the specified hancler is
invoked; otherwise, no action is taken.

If the handler ends normally or executes a &RETURN directive, oontrol
passes to the statement following the one that caused the invocation.

If a PRIMOS command generates a severity code and causes a check
expression to become "TRUE", and both a check handler and a severity
handler exist, then the severity handler is always invoked first; if
that handler returns, the check handler will be invoked. Suppose a CPL
program contains the statements:

&CHECK $THIS% > $THAT%® &ROUTINE IT WAS_GREATER
&SEVERITY &FRROR &ROUTINE ERROR_HAPPENED

If a PRIMDS command causes a positive severity code to be returned, and
also causes variable this to become greater than variable that, then
the handler error hapgened will be invoked before the check handler.
Tf error_happened returns, the handler it_was_greater will be invoked.
If that handler returns, control will pass to the statement following
the one that caused the invocations.

PASSING SEVERITY CODES

Assume a CPL program that runs several other CPL programs. Its
construction might look like this:

RESUME TASK1.CPL
RESUME TASK2.CPL
RESUME TASK3.CPL

Assume also that you would like this program to know whether each of
the programs it runs executes correctly, or whether their execution ran
into problems., You would do this by having the three programs (or
whatever error-handling routines they defined) return a severity code
as part of the &RETURN or &STOP directive with which they end. The
format of these two directives, when used to return severity codes, 1is
as follows:

Second Edition 15-4

ERROR AND CONDITION HANDLING

P> &RETURN

Syntax: &RETURN severity {&MESSAGE text}

Example: &return 1

severity must evaluate to a string convertible to an integer, This
integer is returned to the invoker as a severity (error) code. If
severity is omitted, "0" is returned. The point of return is
determined as in the simple &RETURN discussed in Chapter 2.

If the &MESSAGE clause is present, text is printed at the user's
terminal. (See a further discussion of &RETURN in Chapter 14.)

Note

When you define your own value for SEVERITYS (as you do with
this directive), you may assign it whatever integer value you
please, and test for that value.
When you test for a system—supplied value for SEVERITYS,
however, you should not test for a specific integer. Rather,
the test should be:

e 0, for no error

e > 0, for an error

e < 0, for a warning

P s&SsTOP

Syntax: &STOP {severity} {&MESSAGE text}
Example: &STOP 1 &MESSAGE wrong, Wrong WRONG!
The &STOP directive

® Is processed like the &RETURN directive if it occurs in a main
CPL program

e Halts both the routine in which it occurs and the procedure that
invoked the routine, if it occurs within a routine.

The &STOP directive is explained more fully in the discussion of
routines in Chapter 14.

15-5 Second Edition

DOC4302-190

CONDITION HANDLING

CPL provides an interface to the PRIMOS condition mechanism. This
mechanism is useful for handling exceptional conditions. Same
familiarity with the PRIMOS condition mechanism is assumed. (See The
Prime User's Guide for an introduction to the PRIMOS condition
mechanism.)

An on_unit is a procedure which is called only when some special
condition is raised. Since on-units can be complicated, CPL provides
one for the user, and also makes it possible for the user to define
simpler procedures called handlers. A handler is a &ROUTINE (as
described later in this chapter) which has been declared as a condition
handler by a &CHECK, &SEVERITY, or &N directive (described below).
When a handler is declared, its name and the name of the condition it
will handle are saved by the CPL interpreter. When a condition is
raised, CPL's on-unit is invoked; it examines CPL's list of handlers.
If it finds a handler for the condition, the handler is executed. When
the handler returns, CPL's on-unit returns to the point of
interruption. If no handler is found, the PRIMDS condition mechanism
is instructed to continue its search of the stack for other on-units
(which may or may not belong to another CPL invocation).

Information in the condition stack frame is available through the
CND_INFO command function. (See Chapter 12.)

Because of the overhead involved in searching the stack for a handler,
signalling a condition is expensive. 'Therefore, condition handling
should be reserved for unusual or unlikely events. (It is not
expensive merely to declare a handler with the &N directive.)

P> &ON - DEFINE A HANDLER FOR A CONDITION
Syntax: &N condition &ROUTINE handler_label
Example: &ON bad input &ROUTINE bad inp handler

This statement defines a handler bhandler label for condition.
handler label and condition must evaluate to a routine label and an
identifier, respectively. ocondition may be one of the predefined
PRIMOS conditions (described in the PRIMDS Subroutines Reference Guide)
or one invented by the user. If the condition is raised, and the
handler has not been reverted (see below), the handler is executed.

(User-defined conditions are raised by using the &SIGNAL directive,
explained below.)

handler_label must be defined by a &ROUTINE directive elsewhere in the
CPL program; it may not be defined by a &ABEL directive., If the end
of the handler is reached or if &RETURN is executed, control returns to
the PRIMOS condition mechanism. If the handler executes a nonlocal
§GOTO to a label outside itself, the invocation of CPL in which the
handler was defined is returned to (the stack is unwound if necessary),

Second Edition 15-6

ERROR AND CONDITION HANDLING

and then the goto is executed. This aborts the command that raised the
condition, A label is defined as being outside if it occurs earlier in
the file than the &ROUTINE directive in question,

P> SREVERT
Syntax: &REVERT condition
Example: &REVERT bad_input

The expression condition must evaluate to an identifier. The CPL
program's handler for condition, if any, is reverted (cancelled).

P SROUTINE - DESIGNATE START OF A ROUTINE
Syntax: &ROUTINE routine_label
Example: &ROUTINE my_routine

This directive identifies the code that follows as an internal routine.
The &ROUTINE code is terminated by another &ROUTINE directive
(indicating the beginning of another internal routine) or by the end of
the CPL file. &ROUTINE may not define the start of a routine to be
inside any statement group (&DO, &SELECT, &DATA). &ROUTINE cannot be
executed conditionally; that is, it may not be used inside an &IF or
&ELSE statement.

Any routine may be invoked directly by using the &CALL directive
(explained in Chapter 14). If the routine is declared as a condition
handler by a &CHECK, &SEVERITY, or &N directive, it may also be
invoked by raising the condition it is intended to handle.

Internal routines may not be "fallen into", or entered by a &GOTO. If
the &ROUTINE directive is encountered during the normal execution of a
CPL program, a fatal error occurs and execution of the program is
terminated.

Execution of a routine terminates when it executes a &RETURN or &STOP
directive, or when it executes a nonlocal &GOTO. A &GOTO is nonlocal
if it is to a label which appears in the CPL file before the &ROUTINE
containing the &GOTO.

15-7 Second Edition

DOC4302-190

P> &SIGNAL - RAISE A CONDITION
Syntax: &SIGNAL condition {&NO_RETURN}
Example: &SIGNAL bad input

This directive raises the ocondition condition and causes the CPL
condition mechanism to search for a handler for that condition. The
expression condition must evaluate to an identifier.

If there is no handler for condition in the CPL program, the PRIMOS
condition mechanism will continue searching the user's stack for
on-units. If the user has written no on—units, PRIMOS's own condition
handling will be invoked,

S&NO_RETURN may be omitted, If specified (as in "&SIGNAL bad input

&NO_RETURN"), then it is an error for the handler to return; execution
must be aborted using the &STOP directive or a nonlocal &GOTO.

Second Edition 15-8

Syntax Summary

P &ARGS

Syntax: &ARGS {name{:{type}{=default} 1}...}~
{name: -control list{ name{:{type}{=default} };...} }

Types: CHAR, CHARL, TREE, ENTRY, DEC, OCT, HEX, PIR,
DATE, REST, UNCL

Examples: &args truth; beauty; charm
&args truth:dec; beauty:tree=a_ufd>file; chamm:char

&args charm:char; tr_flag:-tr truth:dec;”
be_flag:-be beauty:tree=g ufd>file

P &CALL
Syntax: &CALL routine_name
Example: &call this routine

&routine this routine

A-1 Second Edition

DOC4302-190

P> &CHECK
Syntax: &CHECK expr &ROUTINE handler

Example: &check %$this var$>%that_var% &routine disaster

P &DATA
Syntax: &DATA stmt
data 1
data n
&END

Example: &data seg
vl #prog
&if %debugger_useds”
&then lo *>bin>new_prog.bin.dbg
&else lo *>bind>new_prog.bin
&end

P> &DEBUG
Syntax: &DEBUG option_list
Options: &ON & FF &ECHO &NO_ECHO &EXECUTE &NO_EXECUTE &WATCH &NO_WATCH

Example: &debug &echo all &watch beserk_var

p &0
Syntax: &DO {iteration}
stmt
stmt
stmt
&END

where iteration is any one of:
1. null (statement grouping)
2. {&WHILE while} {&UNTIL until}

3. var := start {&T0 to} {&BY by} ~
{SWHILE while} {&UNTIL until}

Second Edition A-2

4. var &LIST list {&WHILE while} {&UNTIL until}

5. var &ITEMS items {SWHILE while} {&UNTIL until}

6. var
Examples: &do i
&end

&do &while

&do &until

&G0 a := 5

&do a 5

&do a 5

&do a := 5

&o a := 5

&do a

&do a

&do a

&do a

&do a :
P> &EXPAND

Syntax: &EXPAND ION}

:= start &REPEAT repeat ~

{SWHILE while} {&UNTIL until}

:=1 &to 3
ftn abc%i%.ftn

[null %ag]

[null %a%]

&to 10

&to 10 &by 2

&y 2 &to 10

&toc 10 &while [null %a_string%]

&tc 10 &until [null %a_stringg]

&list %list_of names$%

sitems [wild a_ufd>@@.pll —-single unit]

:= 6 &repeat %a% * %a_oonstant$

:= - 6 &0 — 100 &y - 2

SYNTAX SUMMARY

- 1 &repeat $a% * - 1 &until [length %a_string%] > 10

OFF

Example: &expand on

P GO0

Syntax: &GOTO label

Example: &goto a_label

Second Edition

DOC4302-190

P> &IF-&THEN-&ELSE

Syntax: &IF test &THEN true_stmt
{8FLSE false_stmt}

Example: &if %i% > 5 &then type i = %i%

P> &LABEL

Syntax: &LABEL label name
stmt

Example: &label a label
attach richs

P son
Syntax: &N condition &ROUTINE handler_label

Example: &on bad_input &routine bad input_handler

P> sRESULT
Syntax: &RESULT expr

Example: &result 4 * 6

P> &RETURN
Syntax: &RETURN {severity} {&MESSAGE text}

Examples: &return
&return 1
&return %$severity$s
&return &message Hello!
&return 1 &message Oops

Second Edition A-4

P> &REVERT
Syntax: &REVERT condition

Example: &revert bad_input

P> SROUTINE
Syntax: &ROUTINE handler_name

Example: &routine bad _inp handler

P> &SELECT

Syntax: &SELECT expr
&WHEN exprl {,expr2,expr3, ... ,exprn}
stmt
SWHEN exprl {,expr2,expr3, ... ,exprn}
stmt

{ SOTHERWISE
stmt}
&END

Example: &select gwhat_to_do%
&when abc
attach richs
s&when 6,%one_var% + two_var
&return
&otherwise
resume not_one_of_those.cpl
&end

P> &SET_VAR
Syntax: &S{ET VAR} varl {, var2, ..., varN} := value}
Examples: &set_var this var := this string

&s this var := this_string

& a,b,c :=0

SYNTAX SUMMARY

Second Edition

DOC4302-190

P> &SEVERITY
Syntax: &SEVERITY &ERROR SFAIL
SWARNING &IGNORE
&ROUTINE label
Examples: &severity &warning &ignore
&severity &error &routine fix it

&severity &error &fail
&severity

P &SIGNAL
Syntax: &SIGNAL condition {&NO_RETURN}

Example: &signal bad bug &no_return

P sstop
Syntax: &STOP {severity} {&MESSAGE text}

Example: &stop 1 &message wrong, Wrong, WRONG!

Second Edition A-6

INTRODUCTION

When an error

four items of information:

1.

A line of text giving

the error number.

CPL
Error Messages

occurs in a CPL program, the CPL interpreter prints out

the line number in the CPL program in which the error

occurred.

if the errant text itself cannot be printed, the last token
(that is, the last word or operator) read before the error

occurred,

A full error message.
it will be part of the message.

If the error—causing text can be printed,

The text of the line of source code in which the error occurred,

A line describing the action taken by the CPL interpreter and
giving the name of the program in which the error occurred. For
example:

B-1 Second Edition

DOC4302-190

OK, r blunder

CPL ERRCR 40 ON LINE 2.

A reference to the undefined variable "FILINAME" has been found
in this statement.

SOURCE: como %fillname$%.como

Execution of procedure terminated. BLUNDER (cpl)
ER!

In this example, program BLUNDER.CPL contained a misprint, FILLNAME,
for the variable, FILENAME.

The rest of this appendix contains a list of CPL error messages., The
term text marks the spot in a message where erroneous text from the
running program is printed, Messages are given in order by number,

ERROR MESSAGES

1

10

11

An error was encountered while attempting to read the source text
of the procedure.

The token "text" was found where the keyword &THEN was expected.
All &IF directives must contain a &THEN clause.

The keyword,"sTHEN" may only be used in the "&IF" directive.

The "S&ELSE" directive may only be used as the directive
immediately following an "&IF" directive,

The value "text" is not a number, but is used where a number is
expected.

This "&END" directive could not be matched with a corresponding
"sDO", "&DATA", or "&SELECT" directive.

Internal CPL error: the value of the loop control variable "text"
for this iterative "&DO" loop oould not be retrieved. Please
contact your system administrator.

The value "text" is not Boolean (true/false), but is used where a
Boolean value was expected.

The value "text" is not a legal variable name, but is used where
one is expected.

The value "text" is not a valid statement label, or else a &GOTO
directive has been used to transfer control to this routine.

A syntax error was found in this &ARGS directive.

Second Edition B-2

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27
28

CPL ERROR MESSAGES

Internal CPL error: the semantic stack has been overpopped.
Please contact your system administrator.

The value of the &WHILE expression "text" in this &DO loop is not
Boolean (true/false) as expected.

An unexpected problem was encountered while attempting to access
the value of the variable "text" in this statement, Possible
internal CPL error; please contact your system administrator.

A syntax error was found in a command function reference in this
statement,

Internal CPL error: an unexpected error occurred while attempting
to set the value of variable "text" in this statement. Please
contact your system administrator.

The numeric value "text" used in this directive exceeds the value
range limits of that directive.

The token "text" was found where the keyword "&ROUTINE" was
expected.

The procedure has referenced the global variable "text", bhut
global variables have not been enabled in this process.

An unexpected error occurred while attempting to set or get the
value of the global variable "text". Check the global variables
file for possible damage, accidental deletion, or lack of Write
access.

The token "text" is unrecognized or appears in this iterative
"sDO" directive in an unexpected place. This directive contains
one or more illegal, duplicate, or out—of-order clauses.

The value "text" is not a valid routine name, or is a statement
label used where a routine name was expected. A label may not be
used as a condition, severity, or check routine.

Flow of control has dropped into the routine "text". Control may

be transferred to a routine only by means of a oondition,
severity, or check routine invocation.

The CPL expression "text" contains a non-numeric value where a
numeric value was required, or an illegal combination of operators
and/or values.

This directive ends before the appearance of one or more required
clauses,

The text "text" follows the logical end of this statement,

The token "text" was found where one of the keywords &ERROR,
SWARNING, &ROUTINE, &FAIL, or &IGNORE was expected,

B-3 Second Edition

DOC4302-190

29

30
31
32

33

34

35

37

38

39

40

41

42

43

44
45

46

The value of the check expression of the currently enabled check
routine is "text", which is not Boolean (true/false) as expected.

The token "text" was found where the keyword ":=" was expected.
The &DATA directive may not be nested.

An unexpected error was encountered while operating on the
temporary file oontaining the data from this &DATA block. Check
for insufficient access rights, disk full or offline, or the use
of "CLOSE ALL" in the procedure.

Una_nble to create or open a temporary file with which to process
this &DATA block. Check for insufficient access on the current
directory.

A Primos command statement is required as an argument to the &DATA
directive.

The Primos command invoked by this &DATA block has read all
supplied input data and is requesting more., To suppress this
message and continue execution using terminal input, use the &TTY
directive,

The token "text" was found where the keyword "&MESSAGE" was
expected.

An illegal option keyword has been found in this &DEBUG directive.

Insufficient storage was available to complete processing of this
statement. Reduce the depth of nesting of the CPL program, or the
length and/or number of local variables.

A reference to the undefined variable "text" has been found in
this statement.

The text following "text" in this statement oontains a syntax
error in a variable reference.

The end of the CPL procedure file was reached before the logical
end of the procedure. One or more &DO, &SELECT, or &DATA
directives does not have a matching &END statement,

The initial-value, &TO or &BY expression in this numeric "&DO"
directive has a non-numeric value.

Local command variables are not available at command level.

This line contains a command function reference, but the command
function was not successfully invoked.

The token "text" was found where either &WHEN or &OTHERWISE was
expected,

Second Edition B-4

47

48

49
50

51

52

53

54
55

56

1001

CPL ERROR MESSAGES

The keyword "S&WHEN" may only be used in the "&SELECT" directive.

The keyword "&OTHERNISE" may only be used as the directive
immediately following the last "SWHEN" of a "&SELECT" directive,

This command may only be invoked as a command function.

The token "text" was found in the options field of this "&SIGNAL"
directive. The only option supported is "&NO_RETURN".

The token "text" has been found in the options field of this
"&EXPAND" directive. The only options supported are "ON" and
"OFF".

"text" is not a directive recognized by CPL.

Abbreviation expansion is enabled for this statement, but the
expansion could not be successfully performed.

Too many variables have been placed on the watchlist,

The &RESULT directive may only be executed in a CPL program
invoked as a command function.

The label or routine name "text" could not be found in this CPL
procedure., It was used as the target of a &O0TO, &CALL, Or
&ROUTINE directive elsewhere in the procedure,

A null argument (two successive semicolons) was found in this
&ARGS directive,

1002 This &ARGS directive contains a syntax error which most likely

1003

1004

is an invalid or missing delimiter character.

An illegal option argument name (keyword) has been found in this
&ARGS directive.

Repeat counts (indicated by *) are not presently implemented in
the &ARGS directive.

1005 An unrecognized data type name has been found in this &ARGS

1006

1007

directive.

Internal CPL error: a bad state was encountered during parse of
this &ARGS directive. Please contact your system administrator.

Aword or token in this &ARGS directive exceeds the
implementation maximum limit of 1024 characters.

1008 In this &ARGS directive, an object arqument specifier appears to

the right of one or more option argument (keyword) specifiers.
All object argquments must appear to the left of the first option
argument,

B-5 Second Edition

19.0

DOC4302-190

1014

1015

1017

1018

1019

1020
1021

The default value specified for an argument in this &ARGS
directive is not the correct data type.

In this &ARGS directive, a default value has been specified for
a data type for which default values are not supported.

In this &ARGS directive, a default value expression contains an
undefined variable reference, or a syntax error in a variable
reference.

In this &ARGS directive, the data type UNCL has been specified
more than once or for an option (keyword) argument. The UNCL
data type may be used only for a single object argument.

This &ARGS directive contains a global variable name (a name
starting with "."). Only local variable names may appear in an
&ARGS directive.

This &ARGS directive contains an illegal variable name.

The &ARGS directive does not accept numeric option arguments,
Option arguments must contain at least one alphabetic character.

Second Edition B-6

Running CPL
Programs as

Batch Jobs

RUNNING CPL PROGRAMS AS BATCH JOBS

To run a CPL program as a Batch job, use the command:
JOB pathname {-CPL} {Batch_options} {-ARGS CPL_arguments}

pathname is the pathname of the CPL job, with or without the .CPL
suffix,

Ratch will look for pathname.CPL. If it finds it, it runs the file as
a CPL job. If Batch doesn't find pathname.CPL, it looks for pathname.
If it finds pathname, it runs it as a command input (COMINPUT) file.

The -CPL option may be used to force Batch to run a file as a CPL file,
whether it ends in .CPL or not.

This option may be placed in the command line, or in the $$ JOB line

within the CPL file itself. (If a $$ JOB line is used, it must be the
first non—-comment line of the CPL file.)

c-1 Second Edition

DOC4302-190

Batch-options are the usual options that govern control of Batch jobs:

-ACCT information

—-CPTIME |seconds
NONE

—-ETIME {minutes}
NONE
-HOME pathname
—PRIORITY value
-QUEUE queuename

—RESTART |YES
NO

For information on these options, see the Prime User's Guide or the
PRIMOS Commands Reference Guide.

Note

Batch's -FUNIT option cannot be used with CPL programs. File
units for CPL jobs are allocated dynamically.

The -ARGS option is used to pass arquments to the CPL program.
Bverything (except comments when abbrev processing is on) following the
word -ARGS is passed as arquments to the CPL program when it is run.
For this reason, the -ARGS option must be the last option on the
command line or in the $$ JOB line. If any Batch options follow the
~ARGS option, they will be ignored by Batch and passed to the CPL file
instead.

JCB DISPLAYS FOR CPL JOBS

The JOB -DISPLAY command tells whether a job is a regular job (that is,
a COMINPUT file), or a CPL job. Displays for CPL jobs begin with the
words "Cpl job". 1If the —ARGS option was used, the arguments are shown
as the fimal 1line of the display (or before "Accts:" if -ACCT was
specified).

Second Edition c-2

RINNING CPL PROGRAMS

An Example

Assume a CPL program, named TEST.CPL, that contains the following &ARGS
statement:

&ARGS WHAT:TREE; HOWMANY:DEC = 0
This program might be run and displayed as follows:

OK, JOB TEST —-ARGS SMITH>TESTBED 50

[JOB rev 18.1]

Your job, #00009, was submitted to queue Normal-l.
Home=<ADVERT >JONES >BATCH_JOBS

OK, JOB -DISPLAY

[JOB rev 18.1]

Cpl job TEST(#00009), user JONES executing (queue Normal-l).
Submitted today at 9:05:49 a.m., initiated today at 9:05:58 a.m.
Funit=6, priority=5, cpu limit=None, elapsed limit=None.

Args: SMITH>TESTBED 50

OK,

PUNNING CPL PROGRAMS AS PHANTOMS

Any CPL program that does not request terminal input can be run as a
phantom job, using the command:

PHANTOM pathname [cpl-arguments]
Two points should be noted:

e You cannot use the PHANTOM command's FUNIT argument when running
a CPL program as a phantom job. If you try to do so, the funit
specification is passed as an argument to the CPL program.
(PRIMOS allocates file units dynamically for CPL programs, thus
quarding against conflicts.)

e A CPL program running as a phantom does not need to use the
LOGQUT command to log out the phantom. The &RETURN directive
(implicit or explicit) which concludes a CPL program causes the
phantom to log out in an orderly fashion.,

c-3 Second Edition

19.0

COMINPUT and
CPL Compared

This appendix explains the similarities and differences between CPL
programs and command input files (OCOMINPUT files). It also
illustrates, by means of several sample programs, how command input
files may be converted into CPL programs,

COMPARISONS

The questions that arise when comparing CPL files (or
command input files are:

1.
2.
3.
4,

How are the files executed?

How do they execute other files and programs?
What commands can they execute?

What special commands must they contain?

How can they control the execution of the
contain?

What error-handling capabilities do they have?

D-1

programs) and

ocommands they

Second Edition

DOC4302-190

7. What use can they make of variables?
8. What use can they make of user—defined abbreviations?

9. How do they handle interactive utilities (such as ED and SEG)
and user programs?

The answers to these questions are given below.

Execution of CPL and COMINPUT Files

CPL programs are executed by the RESUME or CPL commands. For example:
R PROG
Command input files are executed by the COMINPUT command. For example:

Q0 FILE.COMI

Execution of Programs by CPL and COMINPUT Files

CPL programs use the RESUME or CPL commands to execute other CPL
programs and R-mode user programs. They use SEG to execute V-mode and
I-mode user programs, and BASIC or BASICV to execute BASIC programs.
(CPL programs cannot use the COMINPUT command. Therefore, they cannot
execute COMINPUT files.)

CPL programs do not need to specify the file units on which other
programs are to be opened. The CPL interpreter assigns the units
automatically.

Similarly, CPL programs do not need to close the file units after the
programs they call have finished running. The CPL interpreter closes
them automatically.

Command input files use the COMINPUT command to execute other command
files. They execute R-mode programs and CPL programs with the RESUME
command; they execute V-mode and I-mode programs with SEG; and they
execute BASIC programs with BASIC or BASICV.

The command input file MUST specify the file unit on which the called

command file is to be opened, and must use the CLOSE comand to close
the file unit when the called command file has finished running.

Second Edition D=2

COMINPUT AND CPL COMPARED

What Commands Can Be Used?

CPL programs can contain (and execute) any PRIMOS commands except:
¢ COMINPUT
o CLOSE ALL
® DELSEG ALL

Command input files can contain any PRIM)S command except:

¢ CLOSE ALL
e DELSFG ALL

Special Commands Needed

There are no special commands needed in a CPL file. (A CPL program
always ends with a &RETURN statement, but the CPL interpreter will add
that statement for you if you don't put it in yourself.)

Command input files must end with CO -END, Q0 -ITY, or QO —CQONTINUE.

Control of Execution

CPL programs can control the execution of the commands they contain by
evaluating flow-of-control directives, such as &IF, &0, and &OTO,
ocontained in the CPL programs. (These directives are explained in
Chapters 2, 8, and 9.)

Command input files allow no control of execution. They must execute

every command they contain, in the order in which the ocommands appear
in the file.

Error Handling

CPL programs may use PRIMOS's default mechanisms for error handling,
severity code handling, and condition handling. Or, they may use CPL
directives and/or subroutines to define their own error handling,
severity code handling, and condition handling. (See Chapter 15 for
details.)

Command input files must use PRIMOS's default mechanisms for error and
condition handling.

D-3 Second Edition

DOC4302-190

Use of Variables

CPL: programs can use both local and global variables, as explained in
Chapter 4. Command input files can use only global variables. They
must use PRIMOS's SET VAR command to set or change the value of these
variables.

Use of Abbreviations

CPL's &EXPAND directive allows commands to be passed from CPL files to
the abbreviation preprocessor for expansion. Thus, users can use their
own abbreviations for PRIMOS commands and their argquments inside CPL
files, as well as at command level.

Command input files cannot use the abbreviation preprocessor. The
commands they contain can use system—defined abbreviations only.

Use of Interactive Utilities and User Programs

CPL files handle interactive utilities and user programs in three ways:

e If the command that invokes the program or utility appears by
itself (for example: SBG), the CPL interpreter invokes the
program or utility, and transfers control to the user at the
terminal. The user provides the data needed by the utility.
When the user leaves the utility (for example, by typing QUIT or
FILE), control returns to the CPL program.

e If the command that invokes the wutility or user program is
preceded by a &DATA directive (for example, &DATA SEG), the CPL
interpreter constructs a temporary file to contain the data (or
subcommands) needed by the program or utility. Construction of
the temporary file terminates when the CPL interpreter reads an
&END directive. When the temporary file is complete, the CPL
interpreter invokes the utility or user program and gives it the
data or commands contained in the temporary file.

Note

If the CPL program is attached to one directory when it
begins execution of the &DATA group, and to another
directory at the end of the &ATA group, it cannot
delete its temporary file. The file therefore remains
in the directory in which it was created.

e If the &DATA group oontains a &ITY directive immediately
preceding the &END directive, the temporary file is built, the
utility or program invoked, and the data or commands from the
temporary file passed to it. When the end of the temporary file

Second Edition D-4

COMINPUT AND CPL COMPARED

is reached, ocontrol passes to the user at the terminal. When
the user finishes with the program or utility, the CPL (file
resumes control.

CPL programs may also request specific items of information from the
user during their execution by the use of the QUERY and RESPONSE
functions (explained in Chapter 5).

Command input files do not distinguish between ocommands that invoke
utilities and other commands.

e A utility is invoked when the command that invokes it 1is read.

® Once the utility has been invoked, succeeding commands in the
COMINPUT file are passed to the utility until some command
relinquishes control of the utility.

e If a CO —TTY command appears cduring this time, control passes to
the user at the terminal. If the user types (0 —CONTINUE while
still inside the utility, the ocommand file resumes passing
commands to the utility. If the user 1leaves the utility and
then types QO ~CONTINUE, the COMINPUT file resumes passing
commands to PRIMOS.

SAMPLE FILES

Here are some sample command input files, To demonstrate the
comparison between command input files and CPL files, each file has
been rewritten twice: once as a CPL file without variables, once as a
CPL file with variables.

A Simple File

Here is a simple ocommand file, C_TEST, that compiles and loads a
FORTRAN program:

/*BEGIN TEST OF COMMAND FILE
COMOUTPUT O_TEST

DATE

/*COMPILE THE PROGRAM IN 64V MODE
FIN FIN.TEST -64V

/*LOAD THE PROGRAM

SEG

VLOAD #FIN.TEST

LO B_FIN.TEST
LI

SA
MAP M_LOADTEST 7
MAP M_UNSATISFIED 3

D=5 Second Edition

DOC4302-190

QU

/*COMMAND FILE TEST COMPLETED
DATE

COMO —END

CO —~END

If C_TEST were rewritten as a CPL program, it would look like this:

/*BEGIN TEST OF COMMAND FILE
OOMOUTPUT O_TEST

DATE

/*COMPILE THE PROGRAM IN 64V MODE
FIN FIN,TEST —-64V

/*LOAD THE PROGRAM

&DATA SEG /*First change
VLOAD #FTIN.TEST

L0 B_FIN.TEST

LI

SA

MAP M _LOADTEST 7

MAP M_UNSATISFIED 3

Qu

&END /*Second change
/*COMMAND FILE TEST COMPLETED
DATE

COMO —-END

With the addition of variables, and the use of the new filename
conventions, you would get:

&ARGS WHAT : TREE = TEST
QOMOUTPUT TEST.COMO
DATE
FIN $WHAT% —64V
&DATA SEG -LOAD /* Let SEG create default filename
10 SWHATS
LI
SA
MAP $WHAT%.MAP 7
MAP $WHAT%,UNSAT 3
ou
&END
DATE
COMO —END

Second Edition D-6

COMINPUT AND CPL COMPARED

Command Files That Run Other Command Files

The —CONTINUE option of COMINPUT allows command files to be chained.
The following example illustrates the chaining of three command files,
and shows how file unit oonflicts can be avoided. The command file
C_GO contains the following commands:

/* COMPILE THE PROGRAM IN 64V MODE
FIN FIN.TEST -64V

/* LOAD THE PROGRAM

COMINPUT C_LOADTEST 7

CLOSE 7

/* RETURN COMMAND TO USER TERMINAL
QOMINPUT —TTY

The command file C_LOADTEST contains the following commands:

/* LOADTEST COMMAND FILE
SEG

VLOAD #FTN,TEST

1O B_FIN.TEST

LI

SA

QU

COMINPUT C_MAPS 10

CLOSE 10

COMINPUT ~CONTINUE

The command file C_MAPS contains the following commands :

/* GET FULL MAP AND UNSATISFIED REFERENCES
SEG

VIOAD * #FTN.TEST

MAP M _IOADTEST 7

MAP M_UNSATISFIED 3

QU

/* RETURN TO 'CALLING' COMMAND FILE
COMINPUT —CONTINUE 7

The calls and returns involved in this sequence are much simpler
with CPL files. The CPL versions of these three files would
look like this:

/* GO.CPL, a translation of C_GO
/* Compile the program in 64V mode
FIN FIN.TEST -64V

/* Load the program

R LOADTEST

D=7 Second Edition

DOC4302-190

/*LOADTEST COMMAND FILE, CPL version
&DATA SEG /* Add &DATA directive
VILOAD #FTN.TEST
1O B_FIN.TEST
LI
SA
QU
&END /* AAd &END directive
R MAPS.CPL /* Resume replaces QO
/* Remove CLOSE command
&RETURN /* Change (0 —(ONTINUE to (optional) &RETURN

/* MAPS.CPL, a CPL version of C_MAPS
/* Get full map and unsatisfied references
&DATA SEG /* Add &DATA directive
VLOAD * #FTN.TEST
MAP M_LOADTEST 7
MAP M _UNSATISFIED 3
QU
&ND /* Add &END directive
/* Return to 'calling&"' program
&RETURN /* This line is optional

If the three files wanted to pass the name of a local variable
among themselves, they could do that as well:

/* New version of GO.CPL

&ARGS WHAT : TREE = TEST

/* Compile program

FIN $WHAT$ —64V

/* Pass program name to LOADTEST.CPL
R LOADTEST $WHAT%

/* New version of LOADTEST.CPL
&ARGS WHAT
&DATA SEG -LOAD
LO %WHAT$S
LI
SA
Qu
&END /* End &DATA group
/* Pass arqument to third CPL program
R MAPS.CPL $WHAT%

Second Edition D-8

COMINPUT AND CPL COMPARED

/* New version of MAPS.CPL
&ARGS WHAT
&DATA SEG
VIOAD * $WHAT% /* SEG looks for file ending in .SEG
MAP 3WHATS .MAP
MAP $WHAT$% .UNSAT
QU
&END /* End &DATA group
/* Control returns to LOADTEST.CPL autamatically

A FINAL NOTE

If a pathname begins with a quotation mark, COMINPUT programs assume
the closing quotation mark. If the programmer forgets to type the
closing quotation mark, the C(OMINPUT program supplies it. CPL
programs, on the other hand, neither assume nor supply the final
quotation mark. If you have pathname problems when you convert a
COMINPUT program to a CPL program, check the pathnames to be sure that
each opening quotation mark is balanced by a final quotation mark.

D-9 Second Edition

Global Vanable

Routines

INTRODUCTION

Two routines are available for the accessing and setting of global
variables from inside a user program. GVS$SET sets the value of a
global variable, and GVSGET retrieves the value.

GVSSET and GVSGET routines, as shown, use PL/I data types and
declaration statements. Data type conversions for FORTRAN and COBOL
are shown at the end of this appendix.

The Primos command DEFINE_GVAR must be used to define the global
variable file before either of these two procedures is called,

CGVSSET

GVSSET allows a user to set the wvalue of a global wvariable., Its
calling sequence is:

DCL GVSSET ENTRY (CHAR(*) VAR, CHAR(*) VAR, FIXED BIN)
CALL GVSSET (var-name, var-value, code)

var-name is the name of the global variable to be set. This name must
FolTow the rules for CPL global variable names. All letters must be
upper case.

E-1 Second Edition

DOC4302-190

var-value is the new value of the variable var-name.
code is a return error code. ES$BFTS is returned if the specified value
is too big. ESUNOP is returned if the global variable area is bad or

uninitialized. ESROOM is returned if an attempt to aocquire more
storage by the variable management routines fails.

GVSGET

GVSGET retrieves the value of a global variable. Its calling sequence
is:

DCL GVSGET ENTRY (CHAR(*) VAR, CHAR(*) VAR, FIXED BIN, FIXED BIN)
CALL GVSGET (var-name, var-value, value-size, code)
var-name is the name of the global variable whose value is to be
retrieved., The name must follow the rules for CPL global variable
names and must be in upper case,
var-value is returned value of varisble var-name.
value-size is the length of the user's buffer var-value in characters.
code is a return error oode. ESBFTS is returned if the user buffer
var-value is too small to hold the current value of the variable.

FSUNOP is returned if the global variable storage is uninitialized or
in bad format. ESFNTF is returned if the variable is not found.

DATA-TYPE CONVERSIONS FOR FORTRAN AND COBCL

The CHAR(*) VAR Data Type

The PL/I data type "char(*) var" is a varying-length character string.
The first word of such a variable contains the length of the character
string currently stored by the variable. The remaining words oontain
the string itself. (Note that the user does not supply the length;
the PL/I, or PL1G, oompiler, determines the 1length of the string
itself, and updates the first word acocordingly.)

FORTRAN Equivalent of CHAR(*) VAR: The FORTRAN equivalent of the
"char (*) var" data type is an integer array. The first word of the
array must store the 1length of the string to be passed. The other
words in the array store the string itself, 2 characters per word.
(Thus, a string 32 letters long would require an array of 17 words.)

Second Edition F-2

GLOBAL VARIABLE ROUTINES

COBOL Equivalent of CHAR(*) VAR: COBOL programs should create a record
structure in which the first word contains the length of the character
string to be passed, while the remaining words coontain the character
string itself.

The FIXED BIN Data Type

The FORTRAN equivalent of FIXED BIN is INTEGER*2. The CQOBOL equivalent
is COMP.

E-3 Second Edition

% 2-5

&ARGS directive:
format of 2-5, 13-1
multiple arguments
omitted arguments

2-6
2-6

&BY clauses, in loops 9-7

&CALL directive 14-3

&CHECK directive 15-4
&DATA groups:
&TTY directive 2-19
CPL programs invoked from
defined 2-18
terminal input in

5=7
2-19

&DEBUG directive 10-1
&DEBUG :

&ECHO 2-2, 10-2
&EXECUTE 10-2
&NO ECHO 10-2
&NO_EXECUTE 10-2
&NO_WATCH 10-2
&OFF 10-2

in routines 10-1

Index

&DO &ITEMS loops 7-10, 9-14
&DO &LIST loops 7-10, 9-11
&D0 &UNTIL loops 9-10
&D0 SWHILE loops 9-9
&DO groups 2-15
&0 loops 9-1
&ECHO 10-1, 10-3, 10-4
&ELSE directive:

diagram of 2-12

format of 2-10
&EXECUTE 10-2, 10-3
&EXPAND directive 11-7
&GOTO directive 2-17

&GOT0s, and routines 14-5
&IF directive:
diagrammed

format of 8-1
nested 2-10, 8-3
simplest form 2-7

2-11

Second Edition

DOC4302-190

use of EXISTS function with
usg_ig NULL function with
2-13

&IF statements 8-1
&IF statements, nested 8-3
&ITEMS loops 7-10, 9-14
&LABEL directive 2-17
SLIST loops 7-10, 9-11
&MESSAGE directive 5-1, 5-9
&NO_ECHO 10-3, 10-4
&NO_EXECUTE 10-2, 10-3
&NO_WATCH 10-3, 10-5
&N directive 15-6
&REPEAT loops 9-11
&RESULT directive 14-8

&RETURN directive 2-24, 3-4,
14-6, 14-7, 15-5

&REVERT directive 15-7
&ROUTINE directive 14-2, 15-7
&SELECT directive 8-6, 8-9

&SELECT, variable references in
8-9

&SET VAR directive 4-1, 11-2

&SEVERITY directive 10-6, 15-3

&SIGNAL directive 15-8

&STOP directive
15-5

14-6, 14-7,

&TO clauses, in loops 9-7

Second Edition

&TTY directive 2-19, 5-1
&TTY directive:
conditiomal use of 2-20

&TTY_CONTINUE directive 2-23,
5-1

SWATCH 10-3, 10-5
+ (Wild character) 7-5
@ (Wild character) 7-5
@@ (Wild character) 7-5
ABBREV 2-1, 11-7

Abbreviations:
in CPL programs 11-7
used to invoke CPL programs
2-2
AFTER function 7-2, 12-4
Arguments:
default specification 6-
default values for 13-5
defined by position 2-6
in CPL. 13-2
multiple 2-6
null, handling of 13-3

2

object 13-2
omitted 2-6
option 13-6

REST type 13-8

supplied to CPL programs 2-5
type checking 6-2

types of 6-3, 13-4

UNCL type 13-8

Arithmetic expressions 12-2

Arithmetic operators 2-9,
11-8, 12-1, 12-2

ATTRIB function 12-7

Batch execution of CPL programs
C-1

Batch jobs C-1

BEFORE function 7-2, 12-4

Boolean operators 2-9

Boolean values 12-1

Braces, in documentation xi
Brackets:
for function calls
in documentation

1-6
xi
CALC function 12-1

CALC function, implicit calls on
11-8

CALC function, use of 12-2

Calling routines 14-2, 14-3

CHAR, type of argument 6-3

CHARL, type of argument 6-3

Check handling 15-3, 15-4

CMDNCO (system commands

directory) 1-2
CND_INFO function 12-11
COMINPUT files D-1
COMINPUT files, input from 5-6
Command input stream 5-5
Commands :
ABBREV 2-2
CPL, 1-2
DELETE VAR 4-6, 4-10, 11-3
in CPL programs 2-1, 2-4
LIST VAR 4-6, 4-10, 11-3
RESUME 1-2
TYPE 5-8
Comments in CPL programs 3-3
Concatenation:
of command lines 3-3, 3-4
of strings 3-7

INDEX

of variables 2-6, 4-4
Condition handling 15-6
Condition mechanism 15-6
Conventions:

filename 7-1

in examples X
used in this book x

CPL:
command
directives
errors 2-23
features 1-8
interpreter 1-3, 1-4
invoking programs 1-2
language 1-3
program names 1-2
subsets of 1-8
suffix 1-2, 2-1

1-2
1-3

DATE function 1-5, 12-11

DATE, type of argument 6-3
Debugging CPL programs 10-1
DEC, type of argument 6-3
Decrementing counted loops 9-6

Default checking, for arguments
6-5
Default error handling 15-1

Default specification, for
argquments 6-2

Default values for arguments
13-5

DEFINE_GVAR command 4-6, 4-7,
11-3
Defining functions 14-8

Defining global and local
variables 2-5, 11-2

Second Edition

DOC4302-190

Defining variables, with &ARGS
directive 2-5

DELETE VAR command
11-3

4_6 r 4_10 r

DIR function 12-7

Directives:
&ARGS 2-5, 13-1
&CALL 14-2
&CHECK 15-4
&DATA 1-8
&DEBUG 10-1
&DO 2-15
&ELSE 2-10
&EXPAND 11-7
&GOTO 2-17
&IF 2-7
&LABEL 2-17
S&MESSAGE 5-9
&N 15-6
&RESULT 14-8
&RETURN 2-24, 14-6, 14-7,

15-5

&REVERT 15-7
SROUTINE 14-2, 15-7
&SELECT 8-5, 8-9
&ET VAR 4-1, 11-2
&SEVERITY 10-6, 15-3

&SIGNAL 15-8

&STOP 14-6, 14-7, 15-5

&TTY 2-19

&TTY_CONTINUE 2-23

flow-of-control 8-2

handled by CPL interpreter
1-6

DO groups 2-15

Echo/no_echo, for debugging
10-4

Echoing commands in CPL programs
2-2

Ellipsis, in documentation xi
Ending routines 14-6
ENTRY, type of argqument 6-3

Second Edition

ENTRYNAME function 12-7

Equality, testing for 2-8,
4-5, 11-8

Equals sign

Error handling:
default 2-23
in subroutines 10-7
user specified 10-6, 15-2

2_9, 3_4 r 12_1

Error messages B-1

Evaluation:
at PRIMOS command level 11-7
implicit calls on CALC 11-8
of arithmetic expressions

12-1

of Boolean relations 12-1
of expressions 11-7
of functions 11-4
of quoted strings 11-6
of variables 11-3
precedence in 12-1
within a CPL program 11-8

Execute/no_execute, for
debugging 10-2

Execution of loops 8-2
Execution, Batch C-1
EXISTS function 12-8

Expressions, evaluation of
11-1, 11-7, 12-1, 12-2

External procedures 14-1

File I/0 9-16

File system functions 12-7
Filename conventions 7-1
Filenames for CPL programs 3-4
Flags, in option arquments 13-6

Flow of control 2-7

INDEX

Flow-of-control directives 8-2, GET_VAR function 12-12

9-1
Global variables 4-6, 11-2

Format rules 3-1

GO0 2-17
Function Calls:
defined 2-13 Grouping statements:
evaluated by CPL interpreter &DATA groups 2-18
1-5 &D0 groups 2-15
format of 11-3
in &IF statements 2-13 GVSGET routine E-2
Functions: GVSSET routine E-1
AFTER 7-2, 12-4
ATIRIB 12-7 GVPAT™H function 12-8
BEFORE 7-2, 12-4
QALC 12-1 HEX function 12-3
CND_INFO 12-11
DATE 12-11 HEX, type of argqument 6-3
DIR 12-7
ENTRYNAME 12-7 High-level Languages:
evaluation of 11-4 programming concepts X, 1-3
EXISTS 2-14, 12-8
GET VAR 12-12 IF stateanents:
GVPATH 12-8 diagram of 2-11
HEX 12-3 format of 2-7
INDEX 12-5
LENGTH 12-5 IF THEN_EILSE statements:
MOD 12-3 diagrammed 2-12
NULL 2-13, 12-5 format of 2-10
OCTAL 12-3 with function calls 2-13
OPEN_FILE 12-8
PATHNAME 12-9 Incrementing counted loops 9-2,
QUERY 5-2, 12-12 9-6
QUOTE 11-5, 12-5
READ FILE 12-9 Indentation of lines in CPL
RESCAN 11-6, 12-12 programs 3-2
RESPONSE 5-4, 12-13
SEARCH 12-5 INDEX function 12-5
SUBST 12-6
SUBSTR 12-5 Inequality, testing for 2-8,
supplied by CPL. 11-3 4-5, 11-8
TO_HEX 12-4
TO_OCTAL 12-4 Integer values for variables
TRANSLATE 12-6 4-3
TRIM 12-6
UNQUOTE 11-5, 12-6 Internal procedures 14-1
user—defined 14-8
VERIFY 12~7 Invocation of routines 14-3,
WILD 7-6, 12-9 14-4

WRITE_FILE 12-10
LENGT™H function 12-5

X-5 Second Edition

DOC4302-190

11-3

Local variables 4-5, 11-2

Logical expressions

Logical operators
12-2

12

2"9’

-2

12-1,

Logical values for variables

4-4
Loop formats 8-2
Loops 9-1
Loops, execution of

Loops::
&BY clauses 9-7

8_

2

&DO &ITEMS 7-10, 9-14

&DO &LIST 7-10,
&DO &UNTIL 9-10
&D0 SWHILE 9-9
&REPEAT 9-11
&TO clauses 9-7
counted 9-7

9-11

counted, execution of

decrementing 9-
formats of 8-2

7

9-7

incrementing 9-2, 9-7

nested 9-5
with file I/0 9

-16

Lower case, in documentation

Main procedures 1

4-1

Miscellaneous functions

MOD function 12-3
Multiple arguments
Names :
of CPL programs
of global variabl
Nested loops 9-5

Nesting routines

Second Edition

2-5

1-2
es

14-5

12-11

4-7

X

X-6

No_execute, debugging technique
10-2

NULL function 2-13, 12-5
Null strings:
explicit 2-6
handling of 13-3
removed by command processor
2-6
supplied for omitted arguments
2-6
Object arguments 13-1, 13-2
OCT, type of argument 6-3
OCTAL function 12-3
Omitted arguments 2-6
OPEN_FILE function 12-8
Operators 2-8, 12-1

Operators, preceded and followed
by spaces 3-4

Option argquments 13-1, 13-6
Output, as seen on terminal 2-2
Passing severity codes 15-4
PATHNAME function 12-9

Percent signs 1-4, 2-5

Phantam execution of CPL
programs C-3

Phantoms C-3

Placement of routines 14-4

Positioml arguments 6-5,
13-2, 13-2

Precedence of operators 12-1

PRIMOS commands :
ABBREV 2-2
in CPL programs 1-3, 1-4,
2-1, 2-4

not available for CPL. 2-4
PRIMOS:
information on 1-3
interaction with CPL. 1-3

Procedures 14-1

PTR, type of argument 6-3

QUERY function 5-1, 5-2, 12-12
QUOTE function 11-5, 12-5
Quoted strings 3-5, 11-4

Quoted strings, evaluation of
11-6

Quoting strings 3-5

Reading files 9-16

READ FILE function 12-9

Relational operators 2-9, 12-2

RESCAN function 11-6, 12-12

RESPONSE function
12-13

5-1, 5-4,

REST arquments 13-8

REST, type of argqument
6-6

6_3 ’

RESUME (command) 1-2

Routines, in CPL 14-1

Routines:
calling
ending 14-3, 14-6
nesting 14-5
placement of

14-3

14-4

Running CPL programs:

as Batch jobs C-1
as phantoms C-3
interactively 1-2

X-7

INDEX

Scope of &SEVERITY directive
10-8

Soope of variables 14-3
SEARCH function 12-5
Semicolons:
as command delimiters 3-1
to separate arquments 2-6

Sequential execution of CPL

programs 2-7
SET VAR command 4-6, 4-8, 11-2
Severity codes 10-6, 15-1
Severity codes, passing 15-4

SEVERITY$ 15-1, 15-5

SINGLE option, to WILD function
7-8

Square brackets 1-6
Statement, CPLL. 3-2
String functions 12-4
String values for variables 4-3
Strings:
concatenation 2-6, 3-7
quoting 3-5
unquoting 3-7

Structured programming concepts
1-3

Subsets of CPL, 1-8

SUBST function 12-6

SUBSTR function 12-5

Suffixes:
CPL 1-2
filename 7-1

Switches, option argquments as
13-6

Second Edition

DOC4302-190

Syntax, summary of A-1

Terminal display of CPL programs

2-2

Terminal input:
from QUERY function 5-2
from RESPONSE function 5-4
in &DATA groups 2-19

Terminal output:
from &MESSAGE directive 5-9
from &RETURN directive 14-6
from &STOP directive 14-6
from TYPE command 5-8

Termination of routines 14-3

Tilde () 3-3
TO_HEX function 12-4
TO_OCTAL function 12-4

Transfer of control between CPL
programs 2-24
TRANSLATE function 12-6
TREE, type of argument 6-3
TRIM function 12-6

Type checking, for arquments

6-2, 6-5, 13-3
TYPE command 5-2, 5-8
Types, of arguments 13-4
UNCL arguments 13-8
UNCL, type of argument 6-3
Underlined words:

in command formats x

in examples X
UNQUOTE function 11-5, 12-7

Unquoting strings 3-7

Second Edition

Upper case, in documentation

User—defined functions 14-8

Using ABBREV files 11-7

Variable names 11-2

Variable names, rules for 3-4
Variable references:
concatenating 2-6
defined 2-5
evaluated by CPL interpreter
1-4
inside function calls 1-5
use of percent signs with 1
Variable watching 10-5
Variables:
defined 11-2
evaluation of
global 4-6
handled by CPL interpreter
1-4
in &SELECT directives
in CPL programs 2-5
Integer values for 4-3
local 4-5
logical values for
names vs, values
string values for
used by routines

11-3

8-9

4-4
2-5
4-3

14-3

VERIFY function 12-7

Watch/No_watch, debugging

technique 10-5
Wild characters 7-5
WILD function 7-6, 12-9

WILD function, options for 7-

Wildcards 7-4
WRITE_FILE function 12-10

Writing files 9-16

X

-4

7

INDEX

Writing functions 14-8

® (wild character) 7-5

X-9 Second Edition

	Front Cover
	Title Page
	i
	Copyright
	ii
	Printing History
	iii
	Contents
	v
	vi
	vii
	viii
	About This Book
	ix
	x
	xi
	Part I
	The Basic Subset
	Chapter 1
	Introduction
	1-1
	1-2
	1-3
	1-4
	1-5
	1-6
	1-7
	1-8
	1-9
	1-10
	Chapter 2
	The Basics of CPL
	2-1
	2-2
	2-3
	2-4
	2-5
	2-6
	2-7
	2-8
	2-9
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	Chapter 3
	CPL Format
	3-1
	3-2
	3-3
	3-4
	3-5
	3-6
	3-7
	Part II
	The Intermediate Subset
	Chapter 4
	Variables in CPL
	4-1
	4-2
	4-3
	4-4
	4-5
	4-6
	4-7
	4-8
	4-9
	4-10
	4-11
	Chapter 5
	Terminal Input and Output in CPL
	5-1
	5-2
	5-3
	5-4
	5-5
	5-6
	5-7
	5-8
	5-9
	5-10
	Chapter 6
	Arguments With Type-checking and Default Values
	6-1
	6-2
	6-3
	6-4
	6-5
	6-6
	6-7
	Chapter 7
	Processing Groups of Files
	7-1
	7-2
	7-3
	7-4
	7-5
	7-6
	7-7
	7-8
	7-9
	7-10
	Chapter 8
	Decision-making in CPL Programs
	8-1
	8-2
	8-3
	8-4
	8-5
	8-6
	8-7
	8-8
	8-9
	8-10
	8-11
	8-12
	8-13
	Chapter 9
	Loops in CPL
	9-1
	9-2
	9-3
	9-4
	9-5
	9-6
	9-7
	9-8
	9-9
	9-10
	9-11
	9-12
	9-13
	9-14
	9-15
	9-16
	Chapter 10
	Debugging and Error Handling in CPL
	10-1
	10-2
	10-3
	10-4
	10-5
	10-6
	10-7
	10-8
	Part III
	Full CPL
	Chapter 11
	Expression Evaluation in CPL
	11-1
	11-2
	11-3
	11-4
	11-5
	11-6
	11-7
	11-8
	11-9
	Chapter 12
	Command Functions
	12-1
	12-2
	12-3
	12-4
	12-5
	12-6
	12-7
	12-8
	12-9
	12-10
	12-11
	12-12
	12-13
	Chapter 13
	Arguments
	13-1
	13-2
	13-3
	13-4
	13-5
	13-6
	13-7
	13-8
	13-9
	13-10
	Chapter 14
	Writing Subroutines and Functions in CPL
	14-1
	14-2
	14-3
	14-4
	14-5
	14-6
	14-7
	14-8
	Chapter 15
	Error and Condition Handling in CPL
	15-1
	15-2
	15-3
	15-4
	15-5
	15-6
	15-7
	15-8
	Appendix A
	Syntax Summary
	A-1
	A-2
	A-3
	A-4
	A-5
	A-6
	Appendix B
	CPL Error Messages
	B-1
	B-2
	B-3
	B-4
	B-5
	B-6
	Appendix C
	Running CPL Programs as Batch Jobs and Phantoms
	C-1
	C-2
	C-3
	Appendix D
	COMINPUT and CPL Compared
	D-1
	D-2
	D-3
	D-4
	D-5
	D-6
	D-7
	D-8
	D-9
	Appendix E
	Global Variable Routines
	E-1
	E-2
	E-3
	Index
	X-1
	X-2
	X-3
	X-4
	X-5
	X-6
	X-7
	X-8
	X-9

